Hey everyone,
I am using the FE-estimtor, first with variables in log-levels and then with variables in log-first-differences. Using first differences, the R-sqaured is much lower.
IN LEVELS:
xtreg logC logP logY logU lim com $t, fe vce (cluster Country)
Fixed-effects (within) regression Number of obs = 586
Group variable: Country Number of groups = 28
R-sq: within = 0.6739 Obs per group: min = 16
between = 0.0585 avg = 20.9
overall = 0.1881 max = 23
F(27,27) = 337.45
corr(u_i, Xb) = 0.0408 Prob > F = 0.0000
(Std. Err. adjusted for 28 clusters in Country)
Robust
logC Coef. Std. Err. t P>t [95% Conf. Interval]
logP -.1530841 .0696668 -2.20 0.037 -.2960285 -.0101396
logY -.0613126 .170431 -0.36 0.722 -.4110082 .288383
logU -.0097524 .0394944 -0.25 0.807 -.0907883 .0712835
lim .0328359 .0352908 0.93 0.360 -.0395749 .1052467
com .0037624 .0574163 0.07 0.948 -.1140461 .1215708
year1991 -.0019222 .022572 -0.09 0.933 -.048236 .0443917
year1992 -.0421362 .0270943 -1.56 0.132 -.0977291 .0134567
year1993 -.1038218 .0422374 -2.46 0.021 -.1904858 -.0171578
year1994 -.0851309 .0362736 -2.35 0.027 -.1595582 -.0107036
year1995 -.0837885 .0439258 -1.91 0.067 -.1739169 .0063399
year1996 -.0994367 .0469642 -2.12 0.044 -.1957993 -.0030742
year1997 -.098517 .0495209 -1.99 0.057 -.2001256 .0030915
year1998 -.1148296 .0556212 -2.06 0.049 -.2289549 -.0007043
year1999 -.1095873 .057305 -1.91 0.066 -.2271675 .0079928
year2000 -.1149373 .0663373 -1.73 0.095 -.2510502 .0211756
year2001 -.1358396 .0697202 -1.95 0.062 -.2788936 .0072143
year2002 -.1241133 .0761523 -1.63 0.115 -.2803648 .0321383
year2003 -.1544152 .0768221 -2.01 0.055 -.3120411 .0032107
year2004 -.1766785 .0791 -2.23 0.034 -.3389783 -.0143786
year2005 -.2164842 .0785883 -2.75 0.010 -.377734 -.0552343
year2006 -.2378107 .0824245 -2.89 0.008 -.4069319 -.0686895
year2007 -.2700316 .0786583 -3.43 0.002 -.4314251 -.1086381
year2008 -.2959255 .0772521 -3.83 0.001 -.4544336 -.1374174
year2009 -.3276065 .0801136 -4.09 0.000 -.4919861 -.1632269
year2010 -.349545 .0857596 -4.08 0.000 -.5255091 -.1735809
year2011 -.372167 .0868558 -4.28 0.000 -.5503803 -.1939536
year2012 -.4626692 .0929163 -4.98 0.000 -.6533178 -.2720206
_cons 8.47939 1.719101 4.93 0.000 4.952086 12.00669
sigma_u .36944696
sigma_e .10837265
rho .92077056 (fraction of variance due to u_i)
IN FRIST DIFFERENCES
xtreg dlogC dlogP dlogY dlogU lim com $t, fe vce(cluster Country)
note: year1991 omitted because of collinearity
Fixed-effects (within) regression Number of obs = 558
Group variable: Country Number of groups = 28
R-sq: within = 0.0552 Obs per group: min = 15
between = 0.0256 avg = 19.9
overall = 0.0468 max = 22
F(26,27) = 25.33
corr(u_i, Xb) = -0.1310 Prob > F = 0.0000
(Std. Err. adjusted for 28 clusters in Country)
Robust
dlogC Coef. Std. Err. t P>t [95% Conf. Interval]
dlogP .0202744 .0317973 0.64 0.529 -.0449682 .0855169
dlogY .2614144 .2350752 1.11 0.276 -.2209201 .743749
dlogU -.0266392 .0244428 -1.09 0.285 -.0767917 .0235133
lim .0042371 .010939 0.39 0.702 -.0182079 .0266821
com .0124518 .0164479 0.76 0.456 -.0212965 .0462002
year1991 0 (omitted)
year1992 -.0285764 .0133649 -2.14 0.042 -.0559989 -.0011538
year1993 -.0454495 .0162131 -2.80 0.009 -.0787161 -.0121829
year1994 .0032717 .0196694 0.17 0.869 -.0370866 .04363
year1995 -.0245817 .0174325 -1.41 0.170 -.0603502 .0111868
year1996 -.0244237 .0167583 -1.46 0.157 -.0588089 .0099616
year1997 -.0198456 .0142809 -1.39 0.176 -.0491475 .0094564
year1998 -.0214831 .016989 -1.26 0.217 -.0563417 .0133755
year1999 -.0075324 .0125627 -0.60 0.554 -.0333089 .0182441
year2000 -.0272667 .0247038 -1.10 0.279 -.0779547 .0234212
year2001 -.0331424 .0113053 -2.93 0.007 -.0563391 -.0099458
year2002 -.0004829 .0162197 -0.03 0.976 -.033763 .0327972
year2003 -.0267522 .013323 -2.01 0.055 -.0540888 .0005844
year2004 -.0371501 .0199465 -1.86 0.073 -.0780769 .0037767
year2005 -.0466669 .0160688 -2.90 0.007 -.0796374 -.0136964
year2006 -.0361674 .0177728 -2.03 0.052 -.0726342 .0002993
year2007 -.0400949 .0171534 -2.34 0.027 -.0752908 -.004899
year2008 -.0367722 .0208067 -1.77 0.088 -.079464 .0059196
year2009 -.0294165 .0303251 -0.97 0.341 -.0916384 .0328055
year2010 -.0377984 .0201746 -1.87 0.072 -.0791933 .0035966
year2011 -.0476827 .0337909 -1.41 0.170 -.1170159 .0216506
year2012 -.0748234 .0530716 -1.41 0.170 -.1837172 .0340704
_cons -.0063753 .009883 -0.65 0.524 -.0266535 .013903
sigma_u .01506935
sigma_e .0825537
rho .03224637 (fraction of variance due to u_i)
How come that the R-squared is that much lower in the first-difference euqation comparing to the levels equation?
Thanks a lot!
Louisa
I am using the FE-estimtor, first with variables in log-levels and then with variables in log-first-differences. Using first differences, the R-sqaured is much lower.
IN LEVELS:
xtreg logC logP logY logU lim com $t, fe vce (cluster Country)
Fixed-effects (within) regression Number of obs = 586
Group variable: Country Number of groups = 28
R-sq: within = 0.6739 Obs per group: min = 16
between = 0.0585 avg = 20.9
overall = 0.1881 max = 23
F(27,27) = 337.45
corr(u_i, Xb) = 0.0408 Prob > F = 0.0000
(Std. Err. adjusted for 28 clusters in Country)
Robust
logC Coef. Std. Err. t P>t [95% Conf. Interval]
logP -.1530841 .0696668 -2.20 0.037 -.2960285 -.0101396
logY -.0613126 .170431 -0.36 0.722 -.4110082 .288383
logU -.0097524 .0394944 -0.25 0.807 -.0907883 .0712835
lim .0328359 .0352908 0.93 0.360 -.0395749 .1052467
com .0037624 .0574163 0.07 0.948 -.1140461 .1215708
year1991 -.0019222 .022572 -0.09 0.933 -.048236 .0443917
year1992 -.0421362 .0270943 -1.56 0.132 -.0977291 .0134567
year1993 -.1038218 .0422374 -2.46 0.021 -.1904858 -.0171578
year1994 -.0851309 .0362736 -2.35 0.027 -.1595582 -.0107036
year1995 -.0837885 .0439258 -1.91 0.067 -.1739169 .0063399
year1996 -.0994367 .0469642 -2.12 0.044 -.1957993 -.0030742
year1997 -.098517 .0495209 -1.99 0.057 -.2001256 .0030915
year1998 -.1148296 .0556212 -2.06 0.049 -.2289549 -.0007043
year1999 -.1095873 .057305 -1.91 0.066 -.2271675 .0079928
year2000 -.1149373 .0663373 -1.73 0.095 -.2510502 .0211756
year2001 -.1358396 .0697202 -1.95 0.062 -.2788936 .0072143
year2002 -.1241133 .0761523 -1.63 0.115 -.2803648 .0321383
year2003 -.1544152 .0768221 -2.01 0.055 -.3120411 .0032107
year2004 -.1766785 .0791 -2.23 0.034 -.3389783 -.0143786
year2005 -.2164842 .0785883 -2.75 0.010 -.377734 -.0552343
year2006 -.2378107 .0824245 -2.89 0.008 -.4069319 -.0686895
year2007 -.2700316 .0786583 -3.43 0.002 -.4314251 -.1086381
year2008 -.2959255 .0772521 -3.83 0.001 -.4544336 -.1374174
year2009 -.3276065 .0801136 -4.09 0.000 -.4919861 -.1632269
year2010 -.349545 .0857596 -4.08 0.000 -.5255091 -.1735809
year2011 -.372167 .0868558 -4.28 0.000 -.5503803 -.1939536
year2012 -.4626692 .0929163 -4.98 0.000 -.6533178 -.2720206
_cons 8.47939 1.719101 4.93 0.000 4.952086 12.00669
sigma_u .36944696
sigma_e .10837265
rho .92077056 (fraction of variance due to u_i)
IN FRIST DIFFERENCES
xtreg dlogC dlogP dlogY dlogU lim com $t, fe vce(cluster Country)
note: year1991 omitted because of collinearity
Fixed-effects (within) regression Number of obs = 558
Group variable: Country Number of groups = 28
R-sq: within = 0.0552 Obs per group: min = 15
between = 0.0256 avg = 19.9
overall = 0.0468 max = 22
F(26,27) = 25.33
corr(u_i, Xb) = -0.1310 Prob > F = 0.0000
(Std. Err. adjusted for 28 clusters in Country)
Robust
dlogC Coef. Std. Err. t P>t [95% Conf. Interval]
dlogP .0202744 .0317973 0.64 0.529 -.0449682 .0855169
dlogY .2614144 .2350752 1.11 0.276 -.2209201 .743749
dlogU -.0266392 .0244428 -1.09 0.285 -.0767917 .0235133
lim .0042371 .010939 0.39 0.702 -.0182079 .0266821
com .0124518 .0164479 0.76 0.456 -.0212965 .0462002
year1991 0 (omitted)
year1992 -.0285764 .0133649 -2.14 0.042 -.0559989 -.0011538
year1993 -.0454495 .0162131 -2.80 0.009 -.0787161 -.0121829
year1994 .0032717 .0196694 0.17 0.869 -.0370866 .04363
year1995 -.0245817 .0174325 -1.41 0.170 -.0603502 .0111868
year1996 -.0244237 .0167583 -1.46 0.157 -.0588089 .0099616
year1997 -.0198456 .0142809 -1.39 0.176 -.0491475 .0094564
year1998 -.0214831 .016989 -1.26 0.217 -.0563417 .0133755
year1999 -.0075324 .0125627 -0.60 0.554 -.0333089 .0182441
year2000 -.0272667 .0247038 -1.10 0.279 -.0779547 .0234212
year2001 -.0331424 .0113053 -2.93 0.007 -.0563391 -.0099458
year2002 -.0004829 .0162197 -0.03 0.976 -.033763 .0327972
year2003 -.0267522 .013323 -2.01 0.055 -.0540888 .0005844
year2004 -.0371501 .0199465 -1.86 0.073 -.0780769 .0037767
year2005 -.0466669 .0160688 -2.90 0.007 -.0796374 -.0136964
year2006 -.0361674 .0177728 -2.03 0.052 -.0726342 .0002993
year2007 -.0400949 .0171534 -2.34 0.027 -.0752908 -.004899
year2008 -.0367722 .0208067 -1.77 0.088 -.079464 .0059196
year2009 -.0294165 .0303251 -0.97 0.341 -.0916384 .0328055
year2010 -.0377984 .0201746 -1.87 0.072 -.0791933 .0035966
year2011 -.0476827 .0337909 -1.41 0.170 -.1170159 .0216506
year2012 -.0748234 .0530716 -1.41 0.170 -.1837172 .0340704
_cons -.0063753 .009883 -0.65 0.524 -.0266535 .013903
sigma_u .01506935
sigma_e .0825537
rho .03224637 (fraction of variance due to u_i)
How come that the R-squared is that much lower in the first-difference euqation comparing to the levels equation?
Thanks a lot!
Louisa
Comment