Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • FE-estimation: R-squared lower with variables in first differences

    Hey everyone,

    I am using the FE-estimtor, first with variables in log-levels and then with variables in log-first-differences. Using first differences, the R-sqaured is much lower.


    IN LEVELS:


    xtreg logC logP logY logU lim com $t, fe vce (cluster Country)

    Fixed-effects (within) regression Number of obs = 586
    Group variable: Country Number of groups = 28

    R-sq: within = 0.6739 Obs per group: min = 16
    between = 0.0585 avg = 20.9
    overall = 0.1881 max = 23

    F(27,27) = 337.45
    corr(u_i, Xb) = 0.0408 Prob > F = 0.0000

    (Std. Err. adjusted for 28 clusters in Country)

    Robust
    logC Coef. Std. Err. t P>t [95% Conf. Interval]

    logP -.1530841 .0696668 -2.20 0.037 -.2960285 -.0101396
    logY -.0613126 .170431 -0.36 0.722 -.4110082 .288383
    logU -.0097524 .0394944 -0.25 0.807 -.0907883 .0712835
    lim .0328359 .0352908 0.93 0.360 -.0395749 .1052467
    com .0037624 .0574163 0.07 0.948 -.1140461 .1215708
    year1991 -.0019222 .022572 -0.09 0.933 -.048236 .0443917
    year1992 -.0421362 .0270943 -1.56 0.132 -.0977291 .0134567
    year1993 -.1038218 .0422374 -2.46 0.021 -.1904858 -.0171578
    year1994 -.0851309 .0362736 -2.35 0.027 -.1595582 -.0107036
    year1995 -.0837885 .0439258 -1.91 0.067 -.1739169 .0063399
    year1996 -.0994367 .0469642 -2.12 0.044 -.1957993 -.0030742
    year1997 -.098517 .0495209 -1.99 0.057 -.2001256 .0030915
    year1998 -.1148296 .0556212 -2.06 0.049 -.2289549 -.0007043
    year1999 -.1095873 .057305 -1.91 0.066 -.2271675 .0079928
    year2000 -.1149373 .0663373 -1.73 0.095 -.2510502 .0211756
    year2001 -.1358396 .0697202 -1.95 0.062 -.2788936 .0072143
    year2002 -.1241133 .0761523 -1.63 0.115 -.2803648 .0321383
    year2003 -.1544152 .0768221 -2.01 0.055 -.3120411 .0032107
    year2004 -.1766785 .0791 -2.23 0.034 -.3389783 -.0143786
    year2005 -.2164842 .0785883 -2.75 0.010 -.377734 -.0552343
    year2006 -.2378107 .0824245 -2.89 0.008 -.4069319 -.0686895
    year2007 -.2700316 .0786583 -3.43 0.002 -.4314251 -.1086381
    year2008 -.2959255 .0772521 -3.83 0.001 -.4544336 -.1374174
    year2009 -.3276065 .0801136 -4.09 0.000 -.4919861 -.1632269
    year2010 -.349545 .0857596 -4.08 0.000 -.5255091 -.1735809
    year2011 -.372167 .0868558 -4.28 0.000 -.5503803 -.1939536
    year2012 -.4626692 .0929163 -4.98 0.000 -.6533178 -.2720206
    _cons 8.47939 1.719101 4.93 0.000 4.952086 12.00669

    sigma_u .36944696
    sigma_e .10837265
    rho .92077056 (fraction of variance due to u_i)



    IN FRIST DIFFERENCES


    xtreg dlogC dlogP dlogY dlogU lim com $t, fe vce(cluster Country)
    note: year1991 omitted because of collinearity

    Fixed-effects (within) regression Number of obs = 558
    Group variable: Country Number of groups = 28

    R-sq: within = 0.0552 Obs per group: min = 15
    between = 0.0256 avg = 19.9
    overall = 0.0468 max = 22

    F(26,27) = 25.33
    corr(u_i, Xb) = -0.1310 Prob > F = 0.0000

    (Std. Err. adjusted for 28 clusters in Country)

    Robust
    dlogC Coef. Std. Err. t P>t [95% Conf. Interval]

    dlogP .0202744 .0317973 0.64 0.529 -.0449682 .0855169
    dlogY .2614144 .2350752 1.11 0.276 -.2209201 .743749
    dlogU -.0266392 .0244428 -1.09 0.285 -.0767917 .0235133
    lim .0042371 .010939 0.39 0.702 -.0182079 .0266821
    com .0124518 .0164479 0.76 0.456 -.0212965 .0462002
    year1991 0 (omitted)
    year1992 -.0285764 .0133649 -2.14 0.042 -.0559989 -.0011538
    year1993 -.0454495 .0162131 -2.80 0.009 -.0787161 -.0121829
    year1994 .0032717 .0196694 0.17 0.869 -.0370866 .04363
    year1995 -.0245817 .0174325 -1.41 0.170 -.0603502 .0111868
    year1996 -.0244237 .0167583 -1.46 0.157 -.0588089 .0099616
    year1997 -.0198456 .0142809 -1.39 0.176 -.0491475 .0094564
    year1998 -.0214831 .016989 -1.26 0.217 -.0563417 .0133755
    year1999 -.0075324 .0125627 -0.60 0.554 -.0333089 .0182441
    year2000 -.0272667 .0247038 -1.10 0.279 -.0779547 .0234212
    year2001 -.0331424 .0113053 -2.93 0.007 -.0563391 -.0099458
    year2002 -.0004829 .0162197 -0.03 0.976 -.033763 .0327972
    year2003 -.0267522 .013323 -2.01 0.055 -.0540888 .0005844
    year2004 -.0371501 .0199465 -1.86 0.073 -.0780769 .0037767
    year2005 -.0466669 .0160688 -2.90 0.007 -.0796374 -.0136964
    year2006 -.0361674 .0177728 -2.03 0.052 -.0726342 .0002993
    year2007 -.0400949 .0171534 -2.34 0.027 -.0752908 -.004899
    year2008 -.0367722 .0208067 -1.77 0.088 -.079464 .0059196
    year2009 -.0294165 .0303251 -0.97 0.341 -.0916384 .0328055
    year2010 -.0377984 .0201746 -1.87 0.072 -.0791933 .0035966
    year2011 -.0476827 .0337909 -1.41 0.170 -.1170159 .0216506
    year2012 -.0748234 .0530716 -1.41 0.170 -.1837172 .0340704
    _cons -.0063753 .009883 -0.65 0.524 -.0266535 .013903

    sigma_u .01506935
    sigma_e .0825537
    rho .03224637 (fraction of variance due to u_i)




    How come that the R-squared is that much lower in the first-difference euqation comparing to the levels equation?


    Thanks a lot!

    Louisa

  • #2
    You can only compare R-squares when you leave the dependent/left-hand-side/explained/y-variable unchanged. The R-square is the proportion of the variance in y explained by your model. By changing y (differencing in your case) you also changed the total variance, i.e. the denominator in R-square.
    ---------------------------------
    Maarten L. Buis
    University of Konstanz
    Department of history and sociology
    box 40
    78457 Konstanz
    Germany
    http://www.maartenbuis.nl
    ---------------------------------

    Comment


    • #3
      Thanks for the answer, Maarten!

      In this context, what does the lower R-squared tell me and how can it be interpreted? That only a small porportion of the variance in y can be explained?

      Comment


      • #4
        You often get high r-squares because everything is going up. The change model drops such trends. There was a literature on government budgeting that looked like it explained .95 of the variance, but when you differences the variables, it wasn't explaining much of the variance at all. So, ignoring general trends in the data, you have a low (but not surprising) level of explanation.

        Comment

        Working...
        X