Dear all,
I am doing an analysis of the pollution haven effect in the German manufacturing industry. I use an IV approach with time, country, and industry fixed effects.
I a first specification, I am using robust standard errors as I have heteroscedasticity. My estimators are negative as expected, but insignificant.
However, I use clustered standard errors, my estimators become significant. The significance of course depends on the fact whether I use
or only single variables in my clusters e.g.
I know that I have to use clustered standard errors if there is correlation of disturbances within groups. Is there any test to decide for which variables I need clusters? Or do I have to use economic theory to decide whether I use clustered se or not?
I am doing an analysis of the pollution haven effect in the German manufacturing industry. I use an IV approach with time, country, and industry fixed effects.
I a first specification, I am using robust standard errors as I have heteroscedasticity. My estimators are negative as expected, but insignificant.
Code:
xi: ivreg2 lnGermanFDIs lnInfrastructureIndex lnQualityofPublicSchools lnCapitalLaborRatios lnOrganizedCrimeIndex lnDistancekm Commonlanguage i.Country i.Year i.Industry (lnGDP lnEnvPolicyIndex lnTariffRate lnIPRP = Tractorsagriculturalworker Landagriculturalworker Regionalcapitallaborratios RegionalOrganizedCrime Regionalpublicschoolquality Regionalinfrastructurequality Regionaltractorsagriculturalwo Regionallandagriculturalworker), robust endog(lnGDP lnEnvPolicyIndex lnTariffRate lnIPRP)
Code:
xi: ivreg2 lnGermanFDIs lnInfrastructureIndex lnQualityofPublicSchools lnCapitalLaborRatios lnOrganizedCrimeIndex lnDistancekm Commonlanguage i.Country i.Year i.Industry (lnGDP lnEnvPolicyIndex lnTariffRate lnIPRP = Tractorsagriculturalworker Landagriculturalworker Regionalcapitallaborratios RegionalOrganizedCrime Regionalpublicschoolquality Regionalinfrastructurequality Regionaltractorsagriculturalwo Regionallandagriculturalworker), robust cluster(Countryj Year Industryi) endog(lnGDP lnEnvPolicyIndex lnTariffRate lnIPRP)
Code:
xi: ivreg2 lnGermanFDIs lnInfrastructureIndex lnQualityofPublicSchools lnCapitalLaborRatios lnOrganizedCrimeIndex lnDistancekm Commonlanguage i.Country i.Year i.Industry (lnGDP lnEnvPolicyIndex lnTariffRate lnIPRP = Tractorsagriculturalworker Landagriculturalworker Regionalcapitallaborratios RegionalOrganizedCrime Regionalpublicschoolquality Regionalinfrastructurequality Regionaltractorsagriculturalwo Regionallandagriculturalworker), robust cluster(Countryj) endog(lnGDP lnEnvPolicyIndex lnTariffRate lnIPRP)
Comment