Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • mediation analysis with binary outcome and survey weights (gsem in Stata 14)

    Hello -

    I'm trying to interpret the indirect and direct effects of a weighted mediation model with a binary DV, a 4-category mediator that I'm treating as continuous, and a set of two dummy variables for the categorical IV. It looks like I can only run a logit model with gsem. Gsem works with svy, but unfortunately estat teffects does not.

    svy, subpop(if age2cat==1): gsem(dv<-iv1 iv2 med) (iv1<-med) (iv2<-med), logit

    How might I go about calculating the indirect and direct effects from the output of this model?

    This is the output:

    (running gsem on estimation sample)

    Survey: Generalized structural equation model

    Number of strata = 1 Number of obs = 3,181
    Number of PSUs = 3,181 Population size = 3,186.0806
    Subpop. no. obs = 1,099
    Subpop. size = 815.754285
    Design df = 3,180

    Response : dv Number of obs = 1,099
    Family : Bernoulli
    Link : logit

    Response : iv1 Number of obs = 1,099
    Family : Bernoulli
    Link : logit

    Response : iv2 Number of obs = 1,099
    Family : Bernoulli
    Link : logit

    -------------------------------------------------------------------------------
    | Linearized
    | Coef. Std. Err. t P>|t| [95% Conf. Interval]
    --------------+----------------------------------------------------------------
    dv <- |
    iv1 | .6390778 .4056427 1.58 0.115 -.1562701 1.434426
    iv2 | 1.305039 .3572413 3.65 0.000 .6045924 2.005486
    med | 1.242894 .1640752 7.58 0.000 .9211896 1.564598
    _cons | -5.682145 .4373785 -12.99 0.000 -6.539717 -4.824573
    --------------+----------------------------------------------------------------
    iv1 <- |
    med | -.0006646 .1235467 -0.01 0.996 -.2429038 .2415746
    _cons | -.8246543 .2127554 -3.88 0.000 -1.241806 -.4075025
    --------------+----------------------------------------------------------------
    iv2 <- |
    med | .3443353 .1153281 2.99 0.003 .1182104 .5704602
    _cons | -1.935966 .2165425 -8.94 0.000 -2.360544 -1.511389
    -------------------------------------------------------------------------------


    Thanks so much,
    -Laura

  • #2
    Hello again,
    I realize that the direct effects are what I'm seeing in the output now. So I'm just looking for how to calculate the indirect effect.
    Thanks,
    -Laura

    Comment


    • #3
      Have you tried nlcom?
      Something like

      gsem (dv <- med iv, probit) (med <- iv, reg)

      //Indirect effect
      nlcom _b[dv:med]*_b[med:iv]

      //Total effect
      nlcom _b[dv:iv]+_b[dv:med]*_b[med:iv]

      where dv=binary dependent variable; med=continuous mediator; iv=continuous independent variable

      Comment

      Working...
      X