Hi everyone! I have run some ologit regressions for my ordinal categorical variable which can take on a value of -1, 0 or 1. my ologit results are like this:
I would like to have the odd ratio's of these independent variables for dependent variable =1. therefore i have used the following code and got the following results:
can I interpret the dy/dx as the odd-ratios? or do I need to use another code.
Code:
Ordered logistic regression Number of obs = 15410 Wald chi2(8) = 104.18 Prob > chi2 = 0.0000 Log pseudolikelihood = -16743.615 Pseudo R2 = 0.0019 (Std. Err. adjusted for 21 clusters in year) ------------------------------------------------------------------------------ | Robust UPGRADE | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- CASH | .9213927 .0336132 -2.24 0.025 .8578123 .9896857 VALUE | 1.044413 .0127019 3.57 0.000 1.019812 1.069607 SIZE | 1.033685 .0182644 1.88 0.061 .9985004 1.07011 EXPERIENCE | .9717727 .0277187 -1.00 0.315 .9189358 1.027648 DAYS | .9997179 .0002154 -1.31 0.190 .9992958 1.00014 FOLLOWING | .9983839 .0009214 -1.75 0.080 .9965797 1.000191 AFF_ACQ | 1.102509 .1018432 1.06 0.291 .9199266 1.321329 AFF_TAR | .9554293 .0950913 -0.46 0.647 .7861054 1.161225 -------------+---------------------------------------------------------------- /cut1 | -.1086019 .1233542 -.3503718 .1331679 /cut2 | 1.002035 .1175542 .7716332 1.232437 ------------------------------------------------------------------------------
Code:
mfx, predict(outcome(1)) Marginal effects after ologit y = Pr(UPGRADE==1) (predict, outcome(1)) = .35006879 ------------------------------------------------------------------------------ variable | dy/dx Std. Err. z P>|z| [ 95% C.I. ] X ---------+-------------------------------------------------------------------- CASH*| -.0186356 .00827 -2.25 0.024 -.034854 -.002418 .523297 VALUE | .0098869 .00276 3.58 0.000 .004473 .015301 5.55294 SIZE | .0075378 .00402 1.88 0.061 -.000335 .015411 8.37543 EXPERI~E | -.0065147 .00646 -1.01 0.313 -.019182 .006153 1.21899 DAYS | -.0000642 .00005 -1.31 0.190 -.00016 .000032 95.7663 FOLLOW~G | -.000368 .00021 -1.75 0.079 -.000779 .000043 19.8554 AFF_ACQ*| .0225002 .02152 1.05 0.296 -.01967 .06467 .024205 AFF_TAR*| -.0103046 .02235 -0.46 0.645 -.054114 .033505 .021285 ------------------------------------------------------------------------------ (*) dy/dx is for discrete change of dummy variable from 0 to 1
Comment