Hello all,
I have been doing the thesis where I have to do a ordered logit regression with the presence of an interaction term in the cross section data.
My variables are:
Independent Variable ( Liquidity: in the scale of 1 to 5 where 1 is lowest liquidity and 5 is Highest liquidity)
Firm_Size(Binary variable: 0 & 1)
Time (Binary variable: 0 & 1 for different time period)
Firm_Size#Time (Interaction term)
and Location (Binary variable: 0 & 1)
So, I ran this regression: and can not interpret the result. I check for the articles which explins the orderd logistic regression, But I am still confused.
Command:
ologit Liquidity Firm_Size Time Location Firm_Size#Time
Output:
Ordered logistic regression Number of obs = 1546
LR chi2(4) = 120.21
Prob > chi2 = 0.0000
Log likelihood = -2314.4224 Pseudo R2 = 0.0253
------------------------------------------------------------------------------
lqcon_rev | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
Firm_Size | -.6539028 .1356143 -4.82 0.000 -.9197019 -.3881037
Time | -1.038813 .2757469 -3.77 0.000 -1.579267 -.4983587
Firm_size# Time | .7457393 .2935339 2.54 0.011 .1704233 1.321055
Location | .8475688 .097975 8.65 0.000 .6555413 1.039596
-------------+----------------------------------------------------------------
/cut1 | -2.323204 .1340933 -2.586022 -2.060386
/cut2 | -1.206339 .122628 -1.446685 -.9659925
/cut3 | .1799421 .1198248 -.0549101 .4147943
/cut4 | 1.830445 .1331184 1.569538 2.091352
------------------------------------------------------------------------------
Now my Question is How do I explain these coefficients considering the interaction term?
I would be grateful if you can help me explaining my result.
Thanks in advance,
Mohiuddin
I have been doing the thesis where I have to do a ordered logit regression with the presence of an interaction term in the cross section data.
My variables are:
Independent Variable ( Liquidity: in the scale of 1 to 5 where 1 is lowest liquidity and 5 is Highest liquidity)
Firm_Size(Binary variable: 0 & 1)
Time (Binary variable: 0 & 1 for different time period)
Firm_Size#Time (Interaction term)
and Location (Binary variable: 0 & 1)
So, I ran this regression: and can not interpret the result. I check for the articles which explins the orderd logistic regression, But I am still confused.
Command:
ologit Liquidity Firm_Size Time Location Firm_Size#Time
Output:
Ordered logistic regression Number of obs = 1546
LR chi2(4) = 120.21
Prob > chi2 = 0.0000
Log likelihood = -2314.4224 Pseudo R2 = 0.0253
------------------------------------------------------------------------------
lqcon_rev | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
Firm_Size | -.6539028 .1356143 -4.82 0.000 -.9197019 -.3881037
Time | -1.038813 .2757469 -3.77 0.000 -1.579267 -.4983587
Firm_size# Time | .7457393 .2935339 2.54 0.011 .1704233 1.321055
Location | .8475688 .097975 8.65 0.000 .6555413 1.039596
-------------+----------------------------------------------------------------
/cut1 | -2.323204 .1340933 -2.586022 -2.060386
/cut2 | -1.206339 .122628 -1.446685 -.9659925
/cut3 | .1799421 .1198248 -.0549101 .4147943
/cut4 | 1.830445 .1331184 1.569538 2.091352
------------------------------------------------------------------------------
Now my Question is How do I explain these coefficients considering the interaction term?
I would be grateful if you can help me explaining my result.
Thanks in advance,
Mohiuddin
Comment