My supervisor was convinced that I should be able to use time fixed effects as there should be enough degrees of freedom, soI run the regression. I am just not exactly sure how to interpret the output. Are the relevant coefficients summarized above, and then what are the year specific coefficients indicating? Thank you in advance!
This is the regression I run and the output:
This is the regression I run and the output:
Code:
xtreg InvWinsor i.CR_POM##i.Tech_Industry Size Profitability i.D, fe note: 1.Tech_Industry omitted because of collinearity Fixed-effects (within) regression Number of obs = 5715 Group variable: GlobalComp~y Number of groups = 777 R-sq: within = 0.0302 Obs per group: min = 1 between = 0.0083 avg = 7.4 overall = 0.0166 max = 29 F(37,4901) = 4.13 corr(u_i, Xb) = -0.4124 Prob > F = 0.0000 -------------------------------------------------------------------------------------- InvWinsor | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------------------+---------------------------------------------------------------- 1.CR_POM | .0178671 .055042 0.32 0.745 -.0900398 .125774 1.Tech_Industry | 0 (omitted) | CR_POM#Tech_Industry | 1 1 | .0604338 .1094199 0.55 0.581 -.1540783 .2749458 | Size | -.6470393 .112147 -5.77 0.000 -.8668976 -.427181 Profitability | 2.480885 .3963357 6.26 0.000 1.70389 3.257881 | D | 1982 | -.5369541 1.960509 -0.27 0.784 -4.380429 3.306521 1983 | -.538144 1.960509 -0.27 0.784 -4.381621 3.305333 1984 | -.1877277 1.960527 -0.10 0.924 -4.031239 3.655784 1985 | .1194069 1.438708 0.08 0.934 -2.701105 2.939919 1986 | .1997108 1.436548 0.14 0.889 -2.616567 3.015989 1987 | .3664296 1.436989 0.25 0.799 -2.450712 3.183572 1988 | .178331 1.437071 0.12 0.901 -2.638972 2.995634 1989 | .1695821 1.437041 0.12 0.906 -2.647662 2.986826 1990 | .0375606 1.437186 0.03 0.979 -2.779968 2.855089 1991 | .3115575 1.437327 0.22 0.828 -2.506248 3.129363 1992 | .3470687 1.437634 0.24 0.809 -2.471339 3.165476 1993 | .3045631 1.437907 0.21 0.832 -2.514378 3.123504 1994 | .4245565 1.438361 0.30 0.768 -2.395277 3.24439 1995 | .4616731 1.438715 0.32 0.748 -2.358853 3.282199 1996 | .4550687 1.438986 0.32 0.752 -2.365988 3.276126 1997 | .6407996 1.438933 0.45 0.656 -2.180154 3.461753 1998 | .3358685 1.439193 0.23 0.815 -2.485595 3.157332 1999 | .4356521 1.439473 0.30 0.762 -2.386359 3.257664 2000 | .5243281 1.439975 0.36 0.716 -2.298668 3.347324 2001 | .2911237 1.439033 0.20 0.840 -2.530025 3.112273 2002 | .4913246 1.43894 0.34 0.733 -2.329642 3.312291 2003 | .5176196 1.439023 0.36 0.719 -2.30351 3.33875 2004 | .8726261 1.439405 0.61 0.544 -1.949254 3.694506 2005 | .7534948 1.439769 0.52 0.601 -2.069097 3.576087 2006 | .7115173 1.440175 0.49 0.621 -2.11187 3.534905 2007 | .7458274 1.440475 0.52 0.605 -2.078149 3.569804 2008 | .2385598 1.440833 0.17 0.869 -2.586119 3.063239 2009 | .4700265 1.441173 0.33 0.744 -2.355318 3.295371 2010 | .9485511 1.441537 0.66 0.511 -1.877507 3.774609 2011 | .6591929 1.44191 0.46 0.648 -2.167596 3.485982 2012 | .5360067 1.44201 0.37 0.710 -2.290979 3.362993 2013 | .8487168 1.442369 0.59 0.556 -1.978974 3.676407 2014 | .407778 1.500747 0.27 0.786 -2.534359 3.349915 | _cons | 5.723433 1.74418 3.28 0.001 2.304058 9.142807 ---------------------+---------------------------------------------------------------- sigma_u | 1.3131517 sigma_e | 1.3862796 rho | .47292974 (fraction of variance due to u_i) -------------------------------------------------------------------------------------- F test that all u_i=0: F(776, 4901) = 1.63 Prob > F = 0.0000
Comment