Dear Statalists,
I am using rbounds to assess the sensitivity of the results of a matching to unobservables. Although my results are significants, when I run the command the significance level is never below 0.1, and of course the point estimate is outside the confidence interval since the beginning. Does it mean that the estimate is certainly biased by unobservables? Here I provide an example of the output I obtained.
psmatch2 spinoff, outcome(pricediff) caliper(0.1) pscore(ps1l)
----------------------------------------------------------------------------------------
Variable Sample | Treated Controls Difference S.E. T-stat
----------------------------+-----------------------------------------------------------
----------------------------+-----------------------------------------------------------
pricediff
Unmatched | .407894737 .109204368 .298690369 .061607262 4.85
ATT | .402985075 .15920398 .243781095 .099344525 2.45
----------------------------+-----------------------------------------------------------
. rbounds delta_pricediff, gamma(1 (0.05) 2)
Rosenbaum bounds for delta_pricediff (N = 201 matched pairs)
Gamma sig+ sig- t-hat+ t-hat- CI+ CI-
----------------------------------------------------------------------
1 .99994 .99994 -.09392 -.09392 -.108593 -.081033
1.05 .999983 .999804 -.095892 -.092257 -.112745 -.079246
1.1 .999995 .999448 -.097718 -.090564 -.118823 -.076756
1.15 .999999 .998622 -.099477 -.08866 -.124092 -.073862
1.2 1 .996908 -.101197 -.086956 -.127451 -.071171
1.25 1 .993678 -.10304 -.085319 -.130488 -.067251
1.3 1 .988088 -.104942 -.083561 -.132839 -.0625
1.35 1 .97912 -.107217 -.081998 -.135704 -.052632
1.4 1 .965673 -.109842 -.080499 -.137919 .044753
1.45 1 .946693 -.112745 -.079246 -.141078 .086538
1.5 1 .92132 -.117045 -.07763 -.143247 .185897
1.55 1 .889021 -.121107 -.075324 -.144914 .210046
1.6 1 .84969 -.124355 -.073549 -.146729 .285592
1.65 1 .803683 -.126613 -.072053 -.148268 .310159
1.7 1 .751802 -.129116 -.069184 -.149791 .334762
1.75 1 .69522 -.130952 -.066667 -.151423 .343548
1.8 1 .63537 -.132578 -.063462 -.152804 .348682
1.85 1 .573815 -.134044 -.059003 -.154593 .353084
1.9 1 .512118 -.136478 -.045833 -.15642 .357154
1.95 1 .451733 -.137812 .038333 -.15814 .361538
2 1 .393916 -.139706 .075226 -.160192 .366247
* gamma - log odds of differential assignment due to unobserved factors
sig+ - upper bound significance level
sig- - lower bound significance level
t-hat+ - upper bound Hodges-Lehmann point estimate
t-hat- - lower bound Hodges-Lehmann point estimate
CI+ - upper bound confidence interval (a= .95)
CI- - lower bound confidence interval (a= .95)
Thank you,
Chiara
I am using rbounds to assess the sensitivity of the results of a matching to unobservables. Although my results are significants, when I run the command the significance level is never below 0.1, and of course the point estimate is outside the confidence interval since the beginning. Does it mean that the estimate is certainly biased by unobservables? Here I provide an example of the output I obtained.
psmatch2 spinoff, outcome(pricediff) caliper(0.1) pscore(ps1l)
----------------------------------------------------------------------------------------
Variable Sample | Treated Controls Difference S.E. T-stat
----------------------------+-----------------------------------------------------------
----------------------------+-----------------------------------------------------------
pricediff
Unmatched | .407894737 .109204368 .298690369 .061607262 4.85
ATT | .402985075 .15920398 .243781095 .099344525 2.45
----------------------------+-----------------------------------------------------------
. rbounds delta_pricediff, gamma(1 (0.05) 2)
Rosenbaum bounds for delta_pricediff (N = 201 matched pairs)
Gamma sig+ sig- t-hat+ t-hat- CI+ CI-
----------------------------------------------------------------------
1 .99994 .99994 -.09392 -.09392 -.108593 -.081033
1.05 .999983 .999804 -.095892 -.092257 -.112745 -.079246
1.1 .999995 .999448 -.097718 -.090564 -.118823 -.076756
1.15 .999999 .998622 -.099477 -.08866 -.124092 -.073862
1.2 1 .996908 -.101197 -.086956 -.127451 -.071171
1.25 1 .993678 -.10304 -.085319 -.130488 -.067251
1.3 1 .988088 -.104942 -.083561 -.132839 -.0625
1.35 1 .97912 -.107217 -.081998 -.135704 -.052632
1.4 1 .965673 -.109842 -.080499 -.137919 .044753
1.45 1 .946693 -.112745 -.079246 -.141078 .086538
1.5 1 .92132 -.117045 -.07763 -.143247 .185897
1.55 1 .889021 -.121107 -.075324 -.144914 .210046
1.6 1 .84969 -.124355 -.073549 -.146729 .285592
1.65 1 .803683 -.126613 -.072053 -.148268 .310159
1.7 1 .751802 -.129116 -.069184 -.149791 .334762
1.75 1 .69522 -.130952 -.066667 -.151423 .343548
1.8 1 .63537 -.132578 -.063462 -.152804 .348682
1.85 1 .573815 -.134044 -.059003 -.154593 .353084
1.9 1 .512118 -.136478 -.045833 -.15642 .357154
1.95 1 .451733 -.137812 .038333 -.15814 .361538
2 1 .393916 -.139706 .075226 -.160192 .366247
* gamma - log odds of differential assignment due to unobserved factors
sig+ - upper bound significance level
sig- - lower bound significance level
t-hat+ - upper bound Hodges-Lehmann point estimate
t-hat- - lower bound Hodges-Lehmann point estimate
CI+ - upper bound confidence interval (a= .95)
CI- - lower bound confidence interval (a= .95)
Thank you,
Chiara
Comment