If your variables are I(1) and you have more than one co-integrating relationship among them, the single-equation ARDL model would be misspecified as it can accommodate only one co-integrating relationship. In that case you would prefer to estimate a vector error-correction model (VECM).
If your variables are I(1) and you have exactly one co-integrating relationship, you can rewrite the ARDL model analytically in error-correction representation with first-differences of depvar on the left-hand side, the co-integrating relationship of the level variables as well as additional lags of first-differenced depvar and indepvars on the right-hand side. All those components are then I(0) which shows that you can safely estimate this ARDL model in levels.
If your variables are I(1) but you do not have any co-integrating relationship among them, estimation is still fine because there exist values for the population parameters such that the error term can be I(0) due to the inclusion of lags of the dependent variable (the sum of the coefficients for the lags of depvar would equal unity in the underlying data generating process such that the level term drops out in the error-correction representation of the model; similarly for indepvars that are I(1)). However, in this case it would be more efficient to estimate an ARDL model directly in first differences.
If all of your variables are I(0) then you obviously do not have any problem with the ARDL model.
The point that I want to make is the following: Testing for non-stationarity and co-integration of your variables is still useful as it guides you towards the optimal model choice (VECM, ARDL in levels, ARDL in first differences).
-
Login or Register
- Log in with
Leave a comment: