-
Login or Register
- Log in with
Autoregressive Distributed Lag Estimates ARDL(2) selected based on Akaike Information Criterion ******************************************************************************* Dependent variable is LTFP 50 observations used for estimation from 1963 to 2012 ******************************************************************************* Regressor Coefficient Standard Error T-Ratio[Prob] LNY(-1) .26434 .13493 1.9592[.056] LNY(-2) .31955 .12454 2.5658[.014] C 1.8713 .53340 3.5082[.001] LNX .067817 .020605 3.2913[.002] ******************************************************************************* R-Squared .98785 R-Bar-Squared .98706 S.E. of Regression .026446 F-Stat. F(3,46) 1246.4[.000] Mean of Dependent Variable 5.1312 S.D. of Dependent Variable .23244 Residual Sum of Squares .032173 Equation Log-likelihood 112.7696 Akaike Info. Criterion 108.7696 Schwarz Bayesian Criterion 104.9456 DW-statistic 2.0606 ******************************************************************************* Error Correction Representation for the Selected ARDL Model ARDL(2) selected based on Akaike Information Criterion ******************************************************************************* Dependent variable is dLTFP 50 observations used for estimation from 1963 to 2012 ******************************************************************************* Regressor Coefficient Standard Error T-Ratio[Prob] dLNY1 -.31955 .12454 -2.5658[.014] dLNX .067817 .020605 3.2913[.002] ecm(-1) -.41611 .12067 -3.4483[.001] ******************************************************************************* List of additional temporary variables created: dLTFP = LTFP-LTFP(-1) dLTFP1 = LTFP(-1)-LTFP(-2) dLKFRS25 = LKFRS25-LKFRS25(-1) ecm = LTFP -4.4971*INPT -.16298*LKFRS25 ******************************************************************************* R-Squared .39903 R-Bar-Squared .35984 S.E. of Regression .026446 F-Stat. F(3,46) 10.1810[.000] Mean of Dependent Variable .014236 S.D. of Dependent Variable .033054 Residual Sum of Squares .032173 Equation Log-likelihood 112.7696 Akaike Info. Criterion 108.7696 Schwarz Bayesian Criterion 104.9456 DW-statistic 2.0606 Estimated Long Run Coefficients using the ARDL Approach ARDL(2) selected based on Akaike Information Criterion ******************************************************************************* Dependent variable is LTFP 50 observations used for estimation from 1963 to 2012 ******************************************************************************* Regressor Coefficient Standard Error T-Ratio[Prob] C 4.4971 .036804 122.1924[.000] LNX .16298 .0068402 23.8264[.000] ******************************************************************************* Testing for existence of a level relationship among the variables in the ARDL model ******************************************************************************* F-statistic 95% Lower Bound 95% Upper Bound 90% Lower Bound 90% Upper Bound 11.8907 12.6082 12.6082 10.3543 10.3543 W-statistic 95% Lower Bound 95% Upper Bound 90% Lower Bound 90% Upper Bound 11.8907 12.6082 12.6082 10.3543 10.3543 *******************************************************************************
/* ECM ARDL (restriction on the constant) */ ardl lnY lnX, ec restricted aic gen ect = lnY - _b[LR:lnX] * lnX - _b[LR:_cons] /* ECM ARDL (without any restriction) */ ardl lnY lnX, ec aic gen ect = lnY - _b[LR:lnX] * lnX
Autoregressive Distributed Lag Estimates ARDL(2,0) selected based on Akaike Information Criterion ******************************************************************************* Dependent variable is LNY 50 observations used for estimation from 1963 to 2012 ******************************************************************************* Regressor Coefficient Standard Error T-Ratio[Prob] LNY(-1) .26434 .13493 1.9592[.056] LNY(-2) .31955 .12454 2.5658[.014] LNX .067817 .020605 3.2913[.002] C 1.8713 .53340 3.5082[.001] ******************************************************************************* R-Squared .98785 R-Bar-Squared .98706 S.E. of Regression .026446 F-Stat. F(3,46) 1246.4[.000] Mean of Dependent Variable 5.1312 S.D. of Dependent Variable .23244 Residual Sum of Squares .032173 Equation Log-likelihood 112.7696 Akaike Info. Criterion 108.7696 Schwarz Bayesian Criterion 104.9456 DW-statistic 2.0606 ******************************************************************************* Error Correction Representation for the Selected ARDL Model ARDL(2,0) selected based on Akaike Information Criterion ******************************************************************************* Dependent variable is dLNY 50 observations used for estimation from 1963 to 2012 ******************************************************************************* Regressor Coefficient Standard Error T-Ratio[Prob] dLNY1 -.31955 .12454 -2.5658[.014] dLNX .067817 .020605 3.2913[.002] ecm(-1) -.41611 .12067 -3.4483[.001] ******************************************************************************* List of additional temporary variables created: dLNY = LNY-LNY(-1) dLNY1 = LNY(-1)-LNY(-2) dLNX = LNX-LNX(-1) ecm = LNY -.16298*LNX -4.4971*C ******************************************************************************* R-Squared .39903 R-Bar-Squared .35984 S.E. of Regression .026446 F-Stat. F(3,46) 10.1810[.000] Mean of Dependent Variable .014236 S.D. of Dependent Variable .033054 Residual Sum of Squares .032173 Equation Log-likelihood 112.7696 Akaike Info. Criterion 108.7696 Schwarz Bayesian Criterion 104.9456 DW-statistic 2.0606 ******************************************************************************* Estimated Long Run Coefficients using the ARDL Approach ARDL(2,0) selected based on Akaike Information Criterion ******************************************************************************* Dependent variable is LNY 50 observations used for estimation from 1963 to 2012 ******************************************************************************* Regressor Coefficient Standard Error T-Ratio[Prob] LNX .16298 .0068402 23.8264[.000] C 4.4971 .036804 122.1924[.000] ******************************************************************************* Testing for existence of a level relationship among the variables in the ARDL model ******************************************************************************* F-statistic 95% Lower Bound 95% Upper Bound 90% Lower Bound 90% Upper Bound 6.9345 5.2102 6.0627 4.2070 4.9431 W-statistic 95% Lower Bound 95% Upper Bound 90% Lower Bound 90% Upper Bound 13.8691 10.4204 12.1254 8.4140 9.8863 ******************************************************************************* If the statistic lies between the bounds, the test is inconclusive. If it is above the upper bound, the null hypothesis of no level effect is rejected. If it is below the lower bound, the null hypothesis of no level effect can't be rejected. The critical value bounds are computed by stochastic simulations using 20000 replications.
/*level ardl*/ ardl lnY lnX, aic ARDL regression Model: level Sample: 1963 - 2012 Number of obs = 50 Log likelihood = 112.7696 R-squared = .98784778 Adj R-squared = .98705524 Root MSE = .02644628 ------------------------------------------------------------------------------ lnY | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- lnY | L1. | .2643447 .1349268 1.96 0.056 -.0072488 .5359382 L2. | .3195464 .1245427 2.57 0.014 .0688549 .5702378 | lnX | .0678166 .0206047 3.29 0.002 .0263414 .1092918 _cons | 1.871289 .5333987 3.51 0.001 .7976133 2.944965 ------------------------------------------------------------------------------ /*ECM ARDL (restriction on the constant)*/ ardl lnY lnX, ec restricted aic ARDL regression Model: ec Sample: 1963 - 2012 Number of obs = 50 Log likelihood = 112.7696 R-squared = .39903176 Adj R-squared = .35983818 Root MSE = .02644628 ------------------------------------------------------------------------------ D.lnY | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- ADJ | lnY | L1. | -.416109 .120671 -3.45 0.001 -.6590071 -.1732108 -------------+---------------------------------------------------------------- LR | lnX | .1629779 .0068402 23.83 0.000 .1492092 .1767466 _cons | 4.497114 .0368035 122.19 0.000 4.423032 4.571195 -------------+---------------------------------------------------------------- SR | lnY | LD. | -.3195464 .1245427 -2.57 0.014 -.5702378 -.0688549 ------------------------------------------------------------------------------ . ardl, noctable btest ARDL regression Model: ec Sample: 1963 - 2012 Number of obs = 50 Log likelihood = 112.7696 R-squared = .39903176 Adj R-squared = .35983818 Root MSE = .02644628 Pesaran/Shin/Smith (2001) Bounds Test H0: no levels relationship F = 13.422 Critical Values (0.1-0.01), F-statistic, Case 2 | [I_0] [I_1] | [I_0] [I_1] | [I_0] [I_1] | [I_0] [I_1] | L_1 L_1 | L_05 L_05 | L_025 L_025 | L_01 L_01 ------+----------------+----------------+----------------+--------------- k_1 | 3.02 3.51 | 3.62 4.16 | 4.18 4.79 | 4.94 5.58 accept if F < critical value for I(0) regressors reject if F > critical value for I(1) regressors k: # of non-deterministic regressors in long-run relationship ARDL regression /*ECM ARDL (without any restriction)*/ ardl lnY lnX, ec aic ARDL regression Model: ec Sample: 1963 - 2012 Number of obs = 50 Log likelihood = 112.7696 R-squared = .39903176 Adj R-squared = .35983818 Root MSE = .02644628 ------------------------------------------------------------------------------ D.lnY | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- ADJ | lnY | L1. | -.416109 .120671 -3.45 0.001 -.6590071 -.1732108 -------------+---------------------------------------------------------------- LR | lnX | .1629779 .0068402 23.83 0.000 .1492092 .1767466 -------------+---------------------------------------------------------------- SR | lnY | LD. | -.3195464 .1245427 -2.57 0.014 -.5702378 -.06885 _cons | 1.871289 .5333987 3.51 0.001 .7976133 2.944965 ------------------------------------------------------------------------------ . ardl, noctable btest ARDL regression Model: ec Sample: 1963 - 2012 Number of obs = 50 Log likelihood = 112.7696 R-squared = .39903176 Adj R-squared = .35983818 Root MSE = .02644628 Pesaran/Shin/Smith (2001) Bounds Test H0: no levels relationship F = 6.395 t = -3.448 Critical Values (0.1-0.01), F-statistic, Case 3 | [I_0] [I_1] | [I_0] [I_1] | [I_0] [I_1] | [I_0] [I_1] | L_1 L_1 | L_05 L_05 | L_025 L_025 | L_01 L_01 ------+----------------+----------------+----------------+--------------- k_1 | 4.04 4.78 | 4.94 5.73 | 5.77 6.68 | 6.84 7.84 accept if F < critical value for I(0) regressors reject if F > critical value for I(1) regressors Critical Values (0.1-0.01), t-statistic, Case 3 | [I_0] [I_1] | [I_0] [I_1] | [I_0] [I_1] | [I_0] [I_1] | L_1 L_1 | L_05 L_05 | L_025 L_025 | L_01 L_01 ------+----------------+----------------+----------------+--------------- k_1 | -2.57 -2.91 | -2.86 -3.22 | -3.13 -3.50 | -3.43 -3.82 accept if t > critical value for I(0) regressors reject if t < critical value for I(1) regressors k: # of non-deterministic regressors in long-run relationship
Leave a comment: