Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Run a univariate latent change score model

    Dear all,

    I am learning to run a univariate latent change score model with multiple indicator variables. I have read some articles about running it with R (lavaan), and I have tried to run it by using sem builder in STATA. However, I am not sure whether it is analyzing the same model represented by the R codes as I do not have any knowledge about R. Especially, while the R codes include a constant "1" pointing to COG and COG_T1, I wonder how it can be included in the sem model in STATA. Besides, I am not sure how the means of the latent variables can be estimated in the sem model. May anyone help to explain it? Thank you so much!

    Here are the sem model that I have created, the STATA codes thus generated and the results:

    Click image for larger version

Name:	MILCS.png
Views:	1
Size:	30.9 KB
ID:	1774208


    PHP Code:
    sem (COG_T1@-> t1x1, ) (COG_T1@-> t1x2, ) (COG_T1@-> t1x3, ) (COG_T1@-> COG_T2, ) (COG_T1 -> COG, ) (COG_T2@-> t2x1, ) (COG_T2@-> 
    t2x2, ) (COG_T2@-> t2x3, ) (COG@-> COG_T2, ), latent(COG_T1 COG_T2 COG cove.t1x1@c e.t1x1*e.t2x1 e.t1x2@d e.t1x2*e.t2x2 e.t1x3@e e.t1x
    3*e.t2x3 e.COG_T2@0 e.t2x1@c e.t2x2@d e.t2x3@enocapslatent 
    PHP Code:
    -----------------------------------------------------------------------------------
                      |                 
    OIM
                      
    Coefficient  stderr.      z    P>|z|     [95confinterval]
    ------------------+----------------------------------------------------------------
    Structural        |
      
    COG_T2          |
                  
    COG |          1  (constrained)
               
    COG_T1 |          1  (constrained)
      ----------------+----------------------------------------------------------------
      
    COG             |
               
    COG_T1 |  -.0062352   .0407409    -0.15   0.878    -.0860858    .0736154
    ------------------+----------------------------------------------------------------
    Measurement       |
      
    t1x1            |
               
    COG_T1 |          1  (constrained)
                
    _cons |   39.94355   .1090095   366.42   0.000     39.72989     40.1572
      
    ----------------+----------------------------------------------------------------
      
    t1x2            |
               
    COG_T1 |   1.116257   .0199764    55.88   0.000     1.077104     1.15541
                _cons 
    |    45.9573    .121152   379.34   0.000     45.71984    46.19475
      
    ----------------+----------------------------------------------------------------
      
    t1x3            |
               
    COG_T1 |   .8701127   .0171555    50.72   0.000     .8364885    .9037368
                _cons 
    |   35.40391    .098166   360.65   0.000     35.21151    35.59631
      
    ----------------+----------------------------------------------------------------
      
    t2x1            |
               
    COG_T2 |          1  (constrained)
                
    _cons |   44.05405   .1348517   326.69   0.000     43.78974    44.31835
      
    ----------------+----------------------------------------------------------------
      
    t2x2            |
               
    COG_T2 |   1.116257   .0199764    55.88   0.000     1.077104     1.15541
                _cons 
    |   50.55733   .1501005   336.82   0.000     50.26314    50.85152
      
    ----------------+----------------------------------------------------------------
      
    t2x3            |
               
    COG_T2 |   .8701127   .0171555    50.72   0.000     .8364885    .9037368
                _cons 
    |    39.0069   .1200321   324.97   0.000     38.77164    39.24216
    ------------------+----------------------------------------------------------------
           var(
    e.t1x1)|   .9073758   .0657532                      .7872355    1.045851
           
    var(e.t1x2)|    1.06619   .0802102                      .9200222    1.235581
           
    var(e.t1x3)|   1.006938   .0605295                      .8950244    1.132845
           
    var(e.t2x1)|   .9073758   .0657532                      .7872355    1.045851
           
    var(e.t2x2)|    1.06619   .0802102                      .9200222    1.235581
           
    var(e.t2x3)|   1.006938   .0605295                      .8950244    1.132845
         
    var(e.COG_T2)|          0  (constrained)
            var(
    e.COG)|   3.213538   .2546385                       2.75128    3.753462
           
    var(COG_T1)|   5.034157   .3566719                       4.38146    5.784085
    ------------------+----------------------------------------------------------------
    cov(e.t1x1,e.t2x1)|   .0554387   .0636501     0.87   0.384    -.0693131    .1801906
    cov
    (e.t1x2,e.t2x2)|     .02881   .0774649     0.37   0.710    -.1230184    .1806384
    cov
    (e.t1x3,e.t2x3)|   .0305753    .059449     0.51   0.607    -.0859426    .1470932
    -----------------------------------------------------------------------------------
    LR test of model vssaturatedchi2(10) = 18.70               Prob chi2 0.0442

    estat gofstats(all)

    ----------------------------------------------------------------------------
    Fit statistic        |      Value   Description
    ---------------------+------------------------------------------------------
    Likelihood ratio     |
             
    chi2_ms(10) |     18.702   model vssaturated
                p 
    chi2 |      0.044
             chi2_bs
    (15) |   3403.806   baseline vssaturated
                p 
    chi2 |      0.000
    ---------------------+------------------------------------------------------
    Population error     |
                   
    RMSEA |      0.042   Root mean squared error of approximation
     90
    CIlower bound |      0.007
             upper bound 
    |      0.071
                  pclose 
    |      0.641   Probability RMSEA <= 0.05
    ---------------------+------------------------------------------------------
    Information criteria |
                     
    AIC |  11136.772   Akaike's information criterion
                     BIC |  11208.420   Bayesian information criterion
    ---------------------+------------------------------------------------------
    Baseline comparison  |
                     CFI |      0.997   Comparative fit index
                     TLI |      0.996   Tucker–Lewis index
    ---------------------+------------------------------------------------------
    Size of residuals    |
                    SRMR |      0.024   Standardized root mean squared residual
                      CD |      0.967   Coefficient of determination
    ---------------------------------------------------------------------------- 

    Below are the latent change score model, the corresponding R codes and results:

    Click image for larger version

Name:	MILCS_onyx.png
Views:	1
Size:	66.8 KB
ID:	1774209

    PHP Code:
    #
    library(lavaan);
    modelData <- read.table(DATAFILENAMEheader TRUE) ;
     
    model<-"
    ! regressions 
       COG_T2=~gamma2*T2X2
       COG_T2=~gamma3*T2X3
       COG_T2=~1.0*T2X1
       COG_T1=~1.0*T1X1
       COG_T1=~gamma2*T1X2
       COG_T1=~gamma3*T1X3
       COG=~1.0*COG_T2
       COG_T1=~beta*COG
       COG_T1=~1.0*COG_T2
    ! residuals, variances and covariances
       COG ~~ VAR___COG*COG
       T1X1 ~~ VAR_X1*T1X1
       T1X2 ~~ VAR_X2*T1X2
       T1X3 ~~ VAR_X3*T1X3
       T2X1 ~~ VAR_X1*T2X1
       T2X2 ~~ VAR_X2*T2X2
       T2X3 ~~ VAR_X3*T2X3
       T1X1 ~~ COVX1*T2X1
       T1X2 ~~ COVX2*T2X2
       T1X3 ~~ COVX3*T2X3
       COG_T1 ~~ VAR_COG_T1*COG_T1
       COG_T2~~0*COG_T2;
    ! means
       COG~mu____COG_*1
       COG_T1~mean_COG_T1*1
       T1X1~1.0*1;
       T2X1~1.0*1;
       T1X2~const__X2*1
       T1X3~const__X3*1
       T2X2~const__X2*1
       T2X3~const__X3*1
       COG_T2~0*1;
    "
    ;
    result<-lavaan(modeldata=modelDatafixed.x=FALSEmissing="FIML");
    summary(resultfit.measures=TRUE); 
    PHP Code:
    T1X1               T1X2               T1X3               T2X1               
    Min
    .   :33.37159   Min.   :37.49925   Min.   :29.71602   Min.   :34.95444   
    1st Qu
    .:38.12540   1st Qu.:44.26538   1st Qu.:33.96661   1st Qu.:41.99031   
    Median 
    :39.97928   Median :45.90049   Median :35.38929   Median :44.16869   
    Mean   
    :39.94355   Mean   :45.95730   Mean   :35.40391   Mean   :44.05405   
    3rd Qu
    .:41.56168   3rd Qu.:47.63180   3rd Qu.:36.97583   3rd Qu.:46.09717   
    Max
    .   :49.53954   Max.   :55.34033   Max.   :43.21093   Max.   :51.98614   
    Stdv   
    :2.50592    Stdv   :2.67662    Stdv   :2.16593    Stdv   :2.96251    
    Total  
    :500        Total  :500        Total  :500        Total  :500        
    Missing
    :0          Missing:0          Missing:0          Missing:0          

    T2X2               T2X3               
    Min
    .   :39.68124   Min.   :30.97837   
    1st Qu
    .:48.28159   1st Qu.:37.23325   
    Median 
    :50.71180   Median :39.08314   
    Mean   
    :50.55733   Mean   :39.00690   
    3rd Qu
    .:52.84079   3rd Qu.:40.74571   
    Max
    .   :60.30775   Max.   :48.08366   
    Stdv   
    :3.38781    Stdv   :2.71277    
    Total  
    :500        Total  :500        
    Missing
    :0          Missing:0          


     
    #|        name|               From / To|Estimate|Std.Error|lbound|rbound
    --+------------+------------------------+--------+---------+------+------
     
    0|   VAR_?�COG|         ?�COG <-> ?�COG3.20496|  0.24995|      |      
     
    1|$\mu_{?�COG}|              mean ?�COG4.35351|  1.58954|      |      
     
    2|      VAR_X1|  T1X1 <-> T1X1 (+other)| 0.90928|  0.06467|      |      
     
    3|      VAR_X2|  T1X2 <-> T1X2 (+other)| 1.06628|  0.07878|      |      
     
    4|      VAR_X3|  T1X3 <-> T1X3 (+other)| 1.00527|  0.06005|      |      
     
    5|     \gamma2|COG_T1 --> T1X2 (+other)| 1.11753|  0.01489|      |      
     
    6|     \gamma3|COG_T1 --> T1X3 (+other)| 0.87290|  0.01292|      |      
     
    7|       COVX1|           T2X1 <-> T1X10.05575|  0.06355|      |      
     
    8|       COVX2|           T2X2 <-> T1X20.02865|  0.07731|      |      
     
    9|       COVX3|           T2X3 <-> T1X30.03000|  0.05941|      |      
    10|  VAR_COG_T1|       COG_T1 <-> COG_T15.02092|  0.34845|      |      
    11mean_COG_T1|             mean COG_T1|38.94034|  0.10752|      |      
    12|        beta|        COG_T1 --> ?�COG|-0.00608|  0.04073|      |      
    13|   const->X2|      mean T1X2 (+other)| 2.43977|  0.61247|      |      
    14|   const->X3|      mean T1X3 (+other)| 1.41759|  0.53139|      |      

    Observed Statistics           27
    Estimated Parameters          
    15
    Non
    -Missing Ratio             1.0
    Number of Observations        
    500
    Minus Two Log Likelihood      
    11102.833
    Log Likelihood                
    : -5551.416
    Independent 
    -2LL              14487.876
    Saturated 
    -2LL                11084.07
    χ²                            
    18.763
    Restricted Degrees of Freedom 
    12
    AIC                           
    11132.833
    AICc                          
    11132.833
    BIC                           
    11196.052
    BIC 
    (sample-size adjusted)    : 11199.048
    Kulback
    -Leibler to Saturated  0.038
    χ² from independent           
    3403.806
    Degrees of Freedom  
    (indep.)   :15
    RMSEA 
    (df corrected)          : 0.034
    RMSEA 
    (Kulback Leibler)       : 0.034
    RMSEA 
    (classic)               : 0.034
    SRMR 
    (covariances only)       : 0.008
    CFI 
    (to independent model)    : 0.998
    TLI 
    (to independent model)    : 0.998

    Timestamp                     
    12.3.202510:37:36
    Runner Individual Time        
    0.055760399999999995
    Wall Clock Time               
    91.1529092
    Runner Time at convergence    
    0.0487475
    Wall Clock at convergence     
    0.1343385

    This estimate is the best found
    .
    This estimate is still improving.
    There are 7 local maxium likelihood optima found so far0 of them reliable.
    This estimate has been found with 0 starting value sets converged in total
Working...
X