Hello together,
I am currently running a robustness test, using a 2SLS regression.
Based on this article (https://www.stata.com/support/faqs/s...least-squares/) I thought, that showing R-squared does not make any sense when running a 2SLS regression, still I find many papers from top-tier journals showing R-squared for 2SLS regression. Should I thus, despite the STATA article also include my centered R-squared or not?
I am a bit confused on what to show and what not to show. I hope you can help me! :-)
I am currently running a robustness test, using a 2SLS regression.
Code:
eststo: ivreghdfe DC y1 y2 y3 y4 y5 y6 dummy (y7 = L.y1 L.y2 L.y3 L.y4 L.y5 L.y6 dummy L2.y7), absorb (Industry Year Country) vce(cluster Firm) noconstant
Code:
IV (2SLS) estimation -------------------- Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and clustering on Firm Number of clusters (Firm) = 11250 Number of obs = 77772 F( 8, 11249) = 75.59 Prob > F = 0.0000 Total (centered) SS = 533.5124222 Centered R2 = 0.0337 Total (uncentered) SS = 533.5124222 Uncentered R2 = 0.0337 Residual SS = 515.5344716 Root MSE = .08906 ----------------------------------------------------------------------------------- | Robust DC | Coefficient std. err. t P>|t| [95% conf. interval] ------------------+---------------------------------------------------------------- y7 | -.0017295 .0019756 -0.88 0.381 -.005602 .0021431 y1 | .0050585 .0011079 4.57 0.000 .0028869 .0072301 y2 | -.0074961 .0008742 -8.57 0.000 -.0092098 -.0057825 y3 | -.0329384 .0044186 -7.45 0.000 -.0415996 -.0242772 y4 | -.0043362 .0014496 -2.99 0.003 -.0071778 -.0014947 y5 | -.0000126 .000036 -0.35 0.728 -.0000832 .0000581 y6 | -.073603 .0044549 -16.52 0.000 -.0823353 -.0648707 dummy | .0023218 .0017758 1.31 0.191 -.001159 .0058026 ----------------------------------------------------------------------------------- Underidentification test (Kleibergen-Paap rk LM statistic): 2229.954 Chi-sq(7) P-val = 0.0000 ------------------------------------------------------------------------------ Weak identification test (Cragg-Donald Wald F statistic): 4271.606 (Kleibergen-Paap rk Wald F statistic): 1357.372 Stock-Yogo weak ID test critical values: 5% maximal IV relative bias 19.86 10% maximal IV relative bias 11.29 20% maximal IV relative bias 6.73 30% maximal IV relative bias 5.07 10% maximal IV size 31.50 15% maximal IV size 17.38 20% maximal IV size 12.48 25% maximal IV size 9.93 Source: Stock-Yogo (2005). Reproduced by permission. NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors. ------------------------------------------------------------------------------ Hansen J statistic (overidentification test of all instruments): 354.263 Chi-sq(6) P-val = 0.0000 ------------------------------------------------------------------------------ Instrumented: y7 Included instruments: y1 y2 y3 y4 y5 y6 dummy Excluded instruments: L.y2 L.y3 L.y4 L.y5 L.y6 L.dummy L2.y7 Partialled-out: _cons nb: total SS, model F and R2s are after partialling-out; any small-sample adjustments include partialled-out variables in regressor count K Duplicates: initial_debtcost2 ------------------------------------------------------------------------------ Absorbed degrees of freedom: ----------------------------------------------------------+ Absorbed FE | Categories - Redundant = Num. Coefs | ------------------+---------------------------------------| Industry | 1104 0 1104 | YEAR | 8722 31 8691 | COUNTRY | 3348 381 2967 ?| ----------------------------------------------------------+ ? = number of redundant parameters may be higher
I am a bit confused on what to show and what not to show. I hope you can help me! :-)