Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Why is R-squared reported in 2SLS regressions in several top-tier journals?

    Hello together,

    I am currently running a robustness test, using a 2SLS regression.

    Code:
     eststo: ivreghdfe DC y1 y2 y3 y4 y5 y6 dummy (y7 = L.y1 L.y2 L.y3 L.y4 L.y5 L.y6 dummy L2.y7), absorb (Industry Year Country) vce(cluster Firm) noconstant
    Code:
    IV (2SLS) estimation
    --------------------
    
    Estimates efficient for homoskedasticity only
    Statistics robust to heteroskedasticity and clustering on Firm
    
    Number of clusters (Firm) =     11250                Number of obs =    77772
                                                          F(  8, 11249) =    75.59
                                                          Prob > F      =   0.0000
    Total (centered) SS     =  533.5124222                Centered R2   =   0.0337
    Total (uncentered) SS   =  533.5124222                Uncentered R2 =   0.0337
    Residual SS             =  515.5344716                Root MSE      =   .08906
    
    -----------------------------------------------------------------------------------
                      |               Robust
           DC | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
    ------------------+----------------------------------------------------------------
         y7 |  -.0017295   .0019756    -0.88   0.381     -.005602    .0021431
         y1 |   .0050585   .0011079     4.57   0.000     .0028869    .0072301
         y2 |  -.0074961   .0008742    -8.57   0.000    -.0092098   -.0057825
         y3 |  -.0329384   .0044186    -7.45   0.000    -.0415996   -.0242772
         y4 |  -.0043362   .0014496    -2.99   0.003    -.0071778   -.0014947
         y5 |  -.0000126    .000036    -0.35   0.728    -.0000832    .0000581
         y6 |   -.073603   .0044549   -16.52   0.000    -.0823353   -.0648707
    dummy |   .0023218   .0017758     1.31   0.191     -.001159    .0058026
    -----------------------------------------------------------------------------------
    Underidentification test (Kleibergen-Paap rk LM statistic):           2229.954
                                                       Chi-sq(7) P-val =    0.0000
    ------------------------------------------------------------------------------
    Weak identification test (Cragg-Donald Wald F statistic):             4271.606
                             (Kleibergen-Paap rk Wald F statistic):       1357.372
    Stock-Yogo weak ID test critical values:  5% maximal IV relative bias    19.86
                                             10% maximal IV relative bias    11.29
                                             20% maximal IV relative bias     6.73
                                             30% maximal IV relative bias     5.07
                                             10% maximal IV size             31.50
                                             15% maximal IV size             17.38
                                             20% maximal IV size             12.48
                                             25% maximal IV size              9.93
    Source: Stock-Yogo (2005).  Reproduced by permission.
    NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors.
    ------------------------------------------------------------------------------
    Hansen J statistic (overidentification test of all instruments):       354.263
                                                       Chi-sq(6) P-val =    0.0000
    ------------------------------------------------------------------------------
    Instrumented:         y7
    Included instruments: y1 y2 y3 y4 y5
                          y6 dummy
    Excluded instruments: L.y2 L.y3 L.y4 L.y5 L.y6
                          L.dummy L2.y7
    Partialled-out:       _cons
                          nb: total SS, model F and R2s are after partialling-out;
                              any small-sample adjustments include partialled-out
                              variables in regressor count K
    Duplicates:           initial_debtcost2
    ------------------------------------------------------------------------------
    
    Absorbed degrees of freedom:
    ----------------------------------------------------------+
          Absorbed FE | Categories  - Redundant  = Num. Coefs |
    ------------------+---------------------------------------|
         Industry |      1104           0        1104     |
        YEAR |      8722          31        8691     |
     COUNTRY |      3348         381        2967    ?|
    ----------------------------------------------------------+
    ? = number of redundant parameters may be higher
    Based on this article (https://www.stata.com/support/faqs/s...least-squares/) I thought, that showing R-squared does not make any sense when running a 2SLS regression, still I find many papers from top-tier journals showing R-squared for 2SLS regression. Should I thus, despite the STATA article also include my centered R-squared or not?

    I am a bit confused on what to show and what not to show. I hope you can help me! :-)
    Last edited by Darian Mistoha; 03 Sep 2024, 03:38.
Working...
X