Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Question regarding Arellano-Bond, Sargen and Hansen test result in xtabond2


    Hello everyone,

    I am trying to use xtabond2 to define a GMM model. The command and results are as below.

    Code:
    . xtabond2 dtd L.dtd CP_1 L.(MCAP fncl_lvrg return_on_asset RE_TA cash_ratio capital_expend) gdp_gr inflation rf_rate index_return Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 if gicscode !=5, gmmstyle(CP_1  L.(MCAP fncl_lvrg return_on_asset RE_TA  cash_ratio capital_expend) gdp_gr inflation rf_rate index_return Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12, collapse laglimits(1 1)) robust small two
    
    Y1 dropped due to collinearity
    Warning: Two-step estimated covariance matrix of moments is singular.
    Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.
    Difference-in-Sargan/Hansen statistics may be negative.
    
    Dynamic panel-data estimation, two-step system GMM
    
    Group variable: firmcode                        Number of obs      =      4602
    Time variable : year                            Number of groups   =       728
    Number of instruments = 45                      Obs per group: min =         1
    F(23, 727)    =    628.64                                      avg =      6.32
    Prob > F      =     0.000                                      max =        12
    
    Corrected
    dtd       Coef.   Std. Err.      t    P>t     [95% Conf. Interval]
    
    dtd 
    L1.    .6113814   .0641396     9.53   0.000     .4854605    .7373024
    
    CP_1    .7722729   .2079524     3.71   0.000      .364014    1.180532
    
    MCAP 
    L1.    .8041614   .2923406     2.75   0.006     .2302289    1.378094
    
    fncl_lvrg 
    L1.   -.0021833    .001279    -1.71   0.088    -.0046942    .0003276
    
    return_on_asset 
    L1.    .0199251   .0152543     1.31   0.192    -.0100226    .0498727
    
    RE_TA 
    L1.    1.767157   1.020805     1.73   0.084    -.2369213    3.771236
    
    cash_ratio 
    L1.    .2493419   .2063071     1.21   0.227     -.155687    .6543708
    
    capital_expend 
    L1.      .00002   .0001054     0.19   0.849    -.0001868    .0002269
    
    gdp_gr   -.0164806   .0587295    -0.28   0.779    -.1317802    .0988191
    inflation    .0264414   .0330959     0.80   0.425    -.0385336    .0914164
    rf_rate   -.2128949   .1881392    -1.13   0.258    -.5822559    .1564661
    index_return   -.0198288    .016495    -1.20   0.230    -.0522123    .0125547
    Y2    1.354285   .6916206     1.96   0.051    -.0035267    2.712097
    Y3    6.692027   .7168333     9.34   0.000     5.284717    8.099338
    Y4    6.086134   .7779792     7.82   0.000      4.55878    7.613488
    Y5    4.498718   .7205533     6.24   0.000     3.084104    5.913332
    Y6    2.648962    .696054     3.81   0.000     1.282446    4.015478
    Y7    3.582663   .6795954     5.27   0.000     2.248459    4.916867
    Y8     8.23553    .631634    13.04   0.000     6.995486    9.475574
    Y9    .4567858   .5348842     0.85   0.393    -.5933163    1.506888
    Y10    5.530483   .6798649     8.13   0.000      4.19575    6.865216
    Y11    -1.43245   .8068667    -1.78   0.076    -3.016517    .1516172
    Y12    7.403293   .8234477     8.99   0.000     5.786674    9.019912
    _cons   -15.51721   3.419655    -4.54   0.000    -22.23078   -8.803628
    
    Instruments for first differences equation
    GMM-type (missing=0, separate instruments for each period unless collapsed)
    L.(CP_1 L.MCAP L.fncl_lvrg L.return_on_asset L.RE_TA L.cash_ratio
    L.capital_expend gdp_gr inflation rf_rate index_return Y1 Y2 Y3 Y4 Y5 Y6
    Y7 Y8 Y9 Y10 Y11 Y12) collapsed
    Instruments for levels equation
    Standard
    _cons
    GMM-type (missing=0, separate instruments for each period unless collapsed)
    D.(CP_1 L.MCAP L.fncl_lvrg L.return_on_asset L.RE_TA L.cash_ratio
    L.capital_expend gdp_gr inflation rf_rate index_return Y1 Y2 Y3 Y4 Y5 Y6
    Y7 Y8 Y9 Y10 Y11 Y12) collapsed
    
    Arellano-Bond test for AR(1) in first differences: z =  -4.44  Pr > z =  0.000
    Arellano-Bond test for AR(2) in first differences: z =   2.51  Pr > z =  0.012
    
    Sargan test of overid. restrictions: chi2(21)   =  31.47  Prob > chi2 =  0.066
    (Not robust, but not weakened by many instruments.)
    Hansen test of overid. restrictions: chi2(21)   =  31.55  Prob > chi2 =  0.065
    (Robust, but weakened by many instruments.)
    The results for Arellano-Bond tests for both AR (1) and (2) are significant, while both Sargen and Hansen tests are insignificant. Does it mean that instruments are invalid and the model is not correctly specified? I mean, should I necessarily reach the insigificant result for Arellano-Bond test for AR(2) and the significant result for Sargan test?

    Thank you very much
Working...
X