Hello everyone,
I am trying to use xtabond2 to define a GMM model. The command and results are as below.
Code:
. xtabond2 dtd L.dtd CP_1 L.(MCAP fncl_lvrg return_on_asset RE_TA cash_ratio capital_expend) gdp_gr inflation rf_rate index_return Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 if gicscode !=5, gmmstyle(CP_1 L.(MCAP fncl_lvrg return_on_asset RE_TA cash_ratio capital_expend) gdp_gr inflation rf_rate index_return Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12, collapse laglimits(1 1)) robust small two Y1 dropped due to collinearity Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for two-step estimation. Difference-in-Sargan/Hansen statistics may be negative. Dynamic panel-data estimation, two-step system GMM Group variable: firmcode Number of obs = 4602 Time variable : year Number of groups = 728 Number of instruments = 45 Obs per group: min = 1 F(23, 727) = 628.64 avg = 6.32 Prob > F = 0.000 max = 12 Corrected dtd Coef. Std. Err. t P>t [95% Conf. Interval] dtd L1. .6113814 .0641396 9.53 0.000 .4854605 .7373024 CP_1 .7722729 .2079524 3.71 0.000 .364014 1.180532 MCAP L1. .8041614 .2923406 2.75 0.006 .2302289 1.378094 fncl_lvrg L1. -.0021833 .001279 -1.71 0.088 -.0046942 .0003276 return_on_asset L1. .0199251 .0152543 1.31 0.192 -.0100226 .0498727 RE_TA L1. 1.767157 1.020805 1.73 0.084 -.2369213 3.771236 cash_ratio L1. .2493419 .2063071 1.21 0.227 -.155687 .6543708 capital_expend L1. .00002 .0001054 0.19 0.849 -.0001868 .0002269 gdp_gr -.0164806 .0587295 -0.28 0.779 -.1317802 .0988191 inflation .0264414 .0330959 0.80 0.425 -.0385336 .0914164 rf_rate -.2128949 .1881392 -1.13 0.258 -.5822559 .1564661 index_return -.0198288 .016495 -1.20 0.230 -.0522123 .0125547 Y2 1.354285 .6916206 1.96 0.051 -.0035267 2.712097 Y3 6.692027 .7168333 9.34 0.000 5.284717 8.099338 Y4 6.086134 .7779792 7.82 0.000 4.55878 7.613488 Y5 4.498718 .7205533 6.24 0.000 3.084104 5.913332 Y6 2.648962 .696054 3.81 0.000 1.282446 4.015478 Y7 3.582663 .6795954 5.27 0.000 2.248459 4.916867 Y8 8.23553 .631634 13.04 0.000 6.995486 9.475574 Y9 .4567858 .5348842 0.85 0.393 -.5933163 1.506888 Y10 5.530483 .6798649 8.13 0.000 4.19575 6.865216 Y11 -1.43245 .8068667 -1.78 0.076 -3.016517 .1516172 Y12 7.403293 .8234477 8.99 0.000 5.786674 9.019912 _cons -15.51721 3.419655 -4.54 0.000 -22.23078 -8.803628 Instruments for first differences equation GMM-type (missing=0, separate instruments for each period unless collapsed) L.(CP_1 L.MCAP L.fncl_lvrg L.return_on_asset L.RE_TA L.cash_ratio L.capital_expend gdp_gr inflation rf_rate index_return Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12) collapsed Instruments for levels equation Standard _cons GMM-type (missing=0, separate instruments for each period unless collapsed) D.(CP_1 L.MCAP L.fncl_lvrg L.return_on_asset L.RE_TA L.cash_ratio L.capital_expend gdp_gr inflation rf_rate index_return Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12) collapsed Arellano-Bond test for AR(1) in first differences: z = -4.44 Pr > z = 0.000 Arellano-Bond test for AR(2) in first differences: z = 2.51 Pr > z = 0.012 Sargan test of overid. restrictions: chi2(21) = 31.47 Prob > chi2 = 0.066 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(21) = 31.55 Prob > chi2 = 0.065 (Robust, but weakened by many instruments.)
Thank you very much