Hi, I am recently employing the dynamic spatial panel model to capture some spillover effects, yet I met several questions when using xsmle command in Stata and also the understanding of final outputs.
1. Why do marginal effects get insignificant or inverse signs compared to coefficients?
I regress housing prices on one key coefficient (INS) as well as other controlling variables. The main results show that INS exerts significant positive effects on local housing prices but significant negative spillover effects. However, the marginal results show a different story. Both short-run and long-run indirect effects are not significant. In some cases, even the sign gets changed.
2. I am also confused about the difference between short-run effects and long-term effects, how many years are short-run, and how many are long-run?
I would be grateful if anyone could give me some suggestions.
the code and output are shown below:
1. Why do marginal effects get insignificant or inverse signs compared to coefficients?
I regress housing prices on one key coefficient (INS) as well as other controlling variables. The main results show that INS exerts significant positive effects on local housing prices but significant negative spillover effects. However, the marginal results show a different story. Both short-run and long-run indirect effects are not significant. In some cases, even the sign gets changed.
2. I am also confused about the difference between short-run effects and long-term effects, how many years are short-run, and how many are long-run?
I would be grateful if anyone could give me some suggestions.
the code and output are shown below:
HTML Code:
xsmle ln_hp ins_10k ln_pop ln_GDP_per ln_emp_dens ln_FixedDI ln_indu_str ln_tea_per ln_doc_per ln_gre_per, fe wmat(W_econ_asy) model(sdm) type(ind) nolog dlag(1) effects
HTML Code:
Computing marginal effects standard errors using MC simulation... Dynamic SDM with spatial fixed-effects Number of obs = 2088 Group variable: city_code Number of groups = 261 Time variable: year Panel length = 8 R-sq: within = 0.4923 between = 0.1081 overall = 0.0894 Mean of fixed-effects = 8.4856 Log-likelihood = . ------------------------------------------------------------------------------ ln_hp | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- Main | ln_hp | L1. | .6239563 .0174454 35.77 0.000 .5897639 .6581486 | ins_10k | .0240951 .0026799 8.99 0.000 .0188425 .0293476 ln_pop | .0056666 .0182 0.31 0.756 -.0300049 .041338 ln_GDP_per | .0126002 .0118619 1.06 0.288 -.0106486 .035849 ln_emp_dens | .0042639 .0081688 0.52 0.602 -.0117467 .0202744 ln_FixedDI | -.0024622 .0076625 -0.32 0.748 -.0174803 .012556 ln_indu_str | .0062549 .0110288 0.57 0.571 -.0153612 .0278709 ln_tea_per | -.0316706 .0186299 -1.70 0.089 -.0681845 .0048434 ln_doc_per | -.0119927 .0096295 -1.25 0.213 -.0308662 .0068807 ln_gre_per | -.0134126 .0077927 -1.72 0.085 -.028686 .0018609 -------------+---------------------------------------------------------------- Wx | ins_10k | -.1101112 .0235168 -4.68 0.000 -.1562033 -.0640191 ln_pop | -2.731433 .3513321 -7.77 0.000 -3.420031 -2.042834 ln_GDP_per | -1.191889 .0978764 -12.18 0.000 -1.383723 -1.000055 ln_emp_dens | 1.274961 .1232264 10.35 0.000 1.033441 1.51648 ln_FixedDI | .6932139 .0799528 8.67 0.000 .5365093 .8499184 ln_indu_str | 1.072119 .1197738 8.95 0.000 .8373665 1.306871 ln_tea_per | -.8538837 .3519525 -2.43 0.015 -1.543698 -.1640695 ln_doc_per | -.8204004 .218481 -3.76 0.000 -1.248615 -.3921856 ln_gre_per | -3.120411 .1957448 -15.94 0.000 -3.504063 -2.736758 -------------+---------------------------------------------------------------- Spatial | rho | 4.617509 .1466779 31.48 0.000 4.330025 4.904992 -------------+---------------------------------------------------------------- Variance | sigma2_e | .0074831 .0002096 35.70 0.000 .0070722 .0078939 -------------+---------------------------------------------------------------- SR_Direct | ins_10k | .0239611 .0026483 9.05 0.000 .0187705 .0291517 ln_pop | -.0069616 .0179036 -0.39 0.697 -.042052 .0281289 ln_GDP_per | .0061032 .0118789 0.51 0.607 -.017179 .0293854 ln_emp_dens | .0118531 .0083588 1.42 0.156 -.00453 .0282361 ln_FixedDI | .0015804 .0075689 0.21 0.835 -.0132544 .0164153 ln_indu_str | .0122578 .0111952 1.09 0.274 -.0096844 .0342 ln_tea_per | -.0372955 .0186412 -2.00 0.045 -.0738315 -.0007595 ln_doc_per | -.0156879 .0097806 -1.60 0.109 -.0348575 .0034818 ln_gre_per | -.030305 .008717 -3.48 0.001 -.0473899 -.01322 -------------+---------------------------------------------------------------- SR_Indirect | ins_10k | -.0000466 .0135823 -0.00 0.997 -.0266674 .0265742 ln_pop | 1.626941 .2388397 6.81 0.000 1.158824 2.095058 ln_GDP_per | .6929296 .0600374 11.54 0.000 .5752585 .8106007 ln_emp_dens | -.7904835 .0627765 -12.59 0.000 -.9135231 -.6674438 ln_FixedDI | -.4114165 .0545876 -7.54 0.000 -.5184062 -.3044268 ln_indu_str | -.6695471 .0670897 -9.98 0.000 -.8010404 -.5380538 ln_tea_per | .589073 .2206522 2.67 0.008 .1566027 1.021543 ln_doc_per | .5353626 .142433 3.76 0.000 .256199 .8145261 ln_gre_per | 1.927789 .1389189 13.88 0.000 1.655513 2.200065 -------------+---------------------------------------------------------------- SR_Total | ins_10k | .0239145 .0129956 1.84 0.066 -.0015565 .0493855 ln_pop | 1.619979 .2373246 6.83 0.000 1.154831 2.085127 ln_GDP_per | .6990328 .0550801 12.69 0.000 .5910777 .8069878 ln_emp_dens | -.7786304 .0614533 -12.67 0.000 -.8990767 -.6581841 ln_FixedDI | -.4098361 .0535431 -7.65 0.000 -.5147787 -.3048934 ln_indu_str | -.6572893 .065499 -10.04 0.000 -.785665 -.5289136 ln_tea_per | .5517775 .215486 2.56 0.010 .1294326 .9741223 ln_doc_per | .5196747 .139795 3.72 0.000 .2456815 .7936679 ln_gre_per | 1.897484 .1395391 13.60 0.000 1.623993 2.170976 -------------+---------------------------------------------------------------- LR_Direct | ins_10k | .0435471 .481839 0.09 0.928 -.90084 .9879341 ln_pop | .269298 5.940164 0.05 0.964 -11.37321 11.91181 ln_GDP_per | .174107 3.302126 0.05 0.958 -6.297942 6.646156 ln_emp_dens | -.1332378 3.459629 -0.04 0.969 -6.913986 6.64751 ln_FixedDI | -.086341 1.831853 -0.05 0.962 -3.676707 3.504025 ln_indu_str | -.0938687 2.608451 -0.04 0.971 -5.206339 5.018601 ln_tea_per | -.0288706 1.483939 -0.02 0.984 -2.937338 2.879596 ln_doc_per | .0890899 2.749492 0.03 0.974 -5.299816 5.477996 ln_gre_per | .2920785 7.724185 0.04 0.970 -14.84705 15.4312 -------------+---------------------------------------------------------------- LR_Indirect | ins_10k | -.0597049 .3150391 -0.19 0.850 -.6771701 .5577604 ln_pop | .8777585 3.893841 0.23 0.822 -6.75403 8.509547 ln_GDP_per | .3244342 2.155578 0.15 0.880 -3.900421 4.54929 ln_emp_dens | -.4378991 2.262136 -0.19 0.847 -4.871604 3.995806 ln_FixedDI | -.2083978 1.195538 -0.17 0.862 -2.551609 2.134814 ln_indu_str | -.3859811 1.710477 -0.23 0.821 -3.738453 2.966491 ln_tea_per | .4466252 .9946368 0.45 0.653 -1.502827 2.396077 ln_doc_per | .3052174 1.795451 0.17 0.865 -3.213801 3.824236 ln_gre_per | 1.087565 5.056423 0.22 0.830 -8.822842 10.99797 -------------+---------------------------------------------------------------- LR_Total | ins_10k | -.0161578 .1683809 -0.10 0.924 -.3461782 .3138626 ln_pop | 1.147057 2.074716 0.55 0.580 -2.919312 5.213425 ln_GDP_per | .4985412 1.155168 0.43 0.666 -1.765547 2.762629 ln_emp_dens | -.5711369 1.208754 -0.47 0.637 -2.940251 1.797978 ln_FixedDI | -.2947387 .6405193 -0.46 0.645 -1.550134 .9606561 ln_indu_str | -.4798497 .9091683 -0.53 0.598 -2.261787 1.302087 ln_tea_per | .4177546 .5380461 0.78 0.437 -.6367963 1.472306 ln_doc_per | .3943073 .9652189 0.41 0.683 -1.497487 2.286102 ln_gre_per | 1.379644 2.694185 0.51 0.609 -3.900863 6.66015 ------------------------------------------------------------------------------