Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Instrumenting with deeper lags -vs- using deeper lags of dependent variable as regressor: which one to follow when AR(2) rejects Null

    Dear All,

    My model tries to estimate risk due to surge in credit demand (Ln_Loss_CC) as a function of various bank-specific and macroeconomic variables. Due to endogeneity concerns and dynamic nature of risk, I employed dynamic panel GMM estimation using -xtabond2- command. The p-value corresponding to AR(2) comes out to be 0.08. Although it doesn't rejects null hypothesis at 5% significance level, the low p-value doesn't instill much confidence either. My codes and results are as follows.

    Code:
    xtabond2 Ln_Loss_CC L.Ln_Loss_CC L.Pub_Dummy L.CAR_T1 L.GNPARatio L.PCR L.NIM L.CorpLoan L.Ln_ContLiab L.OpExpOpRev 
    > L.Ln_Assets L.ROA GDPGr GsecYld CMR, gmmstyle(Ln_Loss_CC, lag(2 2) collapse) gmmstyle(NIM CAR_T1 Ln_ContLiab OpExpOp
    > Rev GNPARatio ROA, lag(2 2) collapse) ivstyle(Year4 Year5 Year13 Year14 Year15 Year16, equation(level)) ivstyle(L.Pu
    > b_Dummy L.PCR L.Ln_Assets GDPGr GsecYld CMR, equation(level)) twostep robust
    Favoring speed over space. To switch, type or click on mata: mata set matafavor space, perm.
    
    Dynamic panel-data estimation, two-step system GMM
    ------------------------------------------------------------------------------
    Group variable: BankID                          Number of obs      =       643
    Time variable : Year                            Number of groups   =        39
    Number of instruments = 27                      Obs per group: min =        14
    Wald chi2(14) = 539359.21                                      avg =     16.49
    Prob > chi2   =     0.000                                      max =        17
    ------------------------------------------------------------------------------
                 |              Corrected
      Ln_Loss_CC | Coefficient  std. err.      z    P>|z|     [95% conf. interval]
    -------------+----------------------------------------------------------------
      Ln_Loss_CC |
             L1. |   .7705289    .103337     7.46   0.000     .5679921    .9730657
                 |
       Pub_Dummy |
             L1. |   .1722594   .0984679     1.75   0.080    -.0207342    .3652529
                 |
          CAR_T1 |
             L1. |   1.419991   1.394901     1.02   0.309    -1.313965    4.153947
                 |
       GNPARatio |
             L1. |  -.4934302   1.010798    -0.49   0.625    -2.474558    1.487698
                 |
             PCR |
             L1. |   -.012697   .1018071    -0.12   0.901    -.2122353    .1868413
                 |
             NIM |
             L1. |   .4599867   6.564143     0.07   0.944     -12.4055    13.32547
                 |
        CorpLoan |
             L1. |  -4.781232   3.541441    -1.35   0.177    -11.72233    2.159864
                 |
     Ln_ContLiab |
             L1. |  -.0135174   .0623081    -0.22   0.828     -.135639    .1086042
                 |
      OpExpOpRev |
             L1. |   .9801034   .5533458     1.77   0.077    -.1044344    2.064641
                 |
       Ln_Assets |
             L1. |   .2279908   .1539175     1.48   0.139    -.0736819    .5296635
                 |
             ROA |
             L1. |   8.120565   5.287054     1.54   0.125    -2.241872      18.483
                 |
           GDPGr |  -.2634084   .4712794    -0.56   0.576    -1.187099    .6602822
         GsecYld |   5.727651   3.362606     1.70   0.089    -.8629366    12.31824
             CMR |  -.9495302   1.930086    -0.49   0.623     -4.73243     2.83337
           _cons |   .8257405   1.462094     0.56   0.572    -2.039911    3.691392
    ------------------------------------------------------------------------------
    Instruments for first differences equation
      GMM-type (missing=0, separate instruments for each period unless collapsed)
        L2.(NIM CAR_T1 Ln_ContLiab OpExpOpRev GNPARatio ROA) collapsed
        L2.Ln_Loss_CC collapsed
    Instruments for levels equation
      Standard
        L.Pub_Dummy L.PCR L.Ln_Assets GDPGr GsecYld CMR
        Year4 Year5 Year13 Year14 Year15 Year16
        _cons
      GMM-type (missing=0, separate instruments for each period unless collapsed)
        DL.(NIM CAR_T1 Ln_ContLiab OpExpOpRev GNPARatio ROA) collapsed
        DL.Ln_Loss_CC collapsed
    ------------------------------------------------------------------------------
    Arellano-Bond test for AR(1) in first differences: z =  -2.88  Pr > z =  0.004
    Arellano-Bond test for AR(2) in first differences: z =   1.75  Pr > z =  0.080
    ------------------------------------------------------------------------------
    Sargan test of overid. restrictions: chi2(12)   =  28.93  Prob > chi2 =  0.004
      (Not robust, but not weakened by many instruments.)
    Hansen test of overid. restrictions: chi2(12)   =  13.08  Prob > chi2 =  0.363
      (Robust, but weakened by many instruments.)
    
    Difference-in-Hansen tests of exogeneity of instrument subsets:
      GMM instruments for levels
        Hansen test excluding group:     chi2(5)    =   5.82  Prob > chi2 =  0.325
        Difference (null H = exogenous): chi2(7)    =   7.27  Prob > chi2 =  0.402
      gmm(Ln_Loss_CC, collapse lag(2 2))
        Hansen test excluding group:     chi2(10)   =   9.90  Prob > chi2 =  0.449
        Difference (null H = exogenous): chi2(2)    =   3.18  Prob > chi2 =  0.204
      gmm(NIM CAR_T1 Ln_ContLiab OpExpOpRev GNPARatio ROA, collapse lag(2 2))
        Hansen test excluding group:     chi2(0)    =   0.00  Prob > chi2 =      .
        Difference (null H = exogenous): chi2(12)   =  13.08  Prob > chi2 =  0.363
      iv(Year4 Year5 Year13 Year14 Year15 Year16, eq(level))
        Hansen test excluding group:     chi2(6)    =   7.45  Prob > chi2 =  0.282
        Difference (null H = exogenous): chi2(6)    =   5.64  Prob > chi2 =  0.465
      iv(L.Pub_Dummy L.PCR L.Ln_Assets GDPGr GsecYld CMR, eq(level))
        Hansen test excluding group:     chi2(6)    =   8.60  Prob > chi2 =  0.198
        Difference (null H = exogenous): chi2(6)    =   4.49  Prob > chi2 =  0.611
    I checked for higher order serial correlation using artests(3) and the results indicated the absence of third order serial correlation between first differenced error terms (Pr > z = 0.121). The results are as as follows.

    Code:
    Arellano-Bond test for AR(1) in first differences: z =  -2.88  Pr > z =  0.004
    Arellano-Bond test for AR(2) in first differences: z =   1.75  Pr > z =  0.080
    Arellano-Bond test for AR(3) in first differences: z =  -1.55  Pr > z =  0.121
    On estimating the model with third lag of dependent variable as instrument (code and Arellano-Bond AR test outcomes are attached below), however, didn't yield significant improvement in p-value (0.083) corresponding to AR(2) test.

    Code:
     xtabond2 Ln_Loss_CC L.Ln_Loss_CC L.Pub_Dummy L.CAR_T1 L.GNPARatio L.PCR L.NIM L.CorpLoan L.Ln_ContLiab L.OpExpOpRev 
    > L.Ln_Assets L.ROA GDPGr GsecYld CMR, gmmstyle(Ln_Loss_CC, lag(3 3) collapse) gmmstyle(NIM CAR_T1 Ln_ContLiab OpExpOp
    > Rev GNPARatio ROA, lag(2 2) collapse) ivstyle(Year4 Year5 Year13 Year14 Year15 Year16, equation(level)) ivstyle(L.Pu
    > b_Dummy L.PCR L.Ln_Assets GDPGr GsecYld CMR, equation(level)) twostep robust
    AR test outcomes:
    Code:
    Arellano-Bond test for AR(1) in first differences: z =  -2.69  Pr > z =  0.007
    Arellano-Bond test for AR(2) in first differences: z =   1.73  Pr > z =  0.083
    Although using fourth lag of dependent variable as an instrument, slightly improved theAR(2) test p-value to 0.107, I remain skeptical about using deeper lags as they serve as weak instruments. Additionally, as an alternative often suggested in this forum, I also tried including the second lag of dependent variable in the estimation model as one of the regressors. In this case, even though AR(2) test didn't reject null (p- value of 0.171), but most of the variables turned insignificant.

    Code:
     xtabond2 Ln_Loss_CC L.Ln_Loss_CC L2.Ln_Loss_CC L.Pub_Dummy L.CAR_T1 L.GNPARatio L.PCR L.NIM L.CorpLoan L.Ln_ContLiab
    >  L.OpExpOpRev L.Ln_Assets L.ROA GDPGr GsecYld CMR, gmmstyle(Ln_Loss_CC, lag(2 2) collapse) gmmstyle(NIM CAR_T1 Ln_Co
    > ntLiab OpExpOpRev GNPARatio ROA, lag(2 2) collapse) ivstyle(Year4 Year5 Year13 Year14 Year15 Year16, equation(level)
    > ) ivstyle(L.Pub_Dummy L.PCR L.Ln_Assets GDPGr GsecYld CMR, equation(level)) twostep robust
    Favoring speed over space. To switch, type or click on mata: mata set matafavor space, perm.
    
    Dynamic panel-data estimation, two-step system GMM
    ------------------------------------------------------------------------------
    Group variable: BankID                          Number of obs      =       604
    Time variable : Year                            Number of groups   =        39
    Number of instruments = 27                      Obs per group: min =        13
    Wald chi2(15) = 551320.37                                      avg =     15.49
    Prob > chi2   =     0.000                                      max =        16
    ------------------------------------------------------------------------------
                 |              Corrected
      Ln_Loss_CC | Coefficient  std. err.      z    P>|z|     [95% conf. interval]
    -------------+----------------------------------------------------------------
      Ln_Loss_CC |
             L1. |   .7680015   .0697107    11.02   0.000     .6313712    .9046319
             L2. |   .0704301    .046449     1.52   0.129    -.0206082    .1614684
                 |
       Pub_Dummy |
             L1. |   .1365109   .0860715     1.59   0.113    -.0321861     .305208
                 |
          CAR_T1 |
             L1. |   .5344809   .9822235     0.54   0.586    -1.390642    2.459604
                 |
       GNPARatio |
             L1. |   .2529465   1.022552     0.25   0.805    -1.751218    2.257111
                 |
             PCR |
             L1. |   .0867373   .1030018     0.84   0.400    -.1151426    .2886172
                 |
             NIM |
             L1. |  -2.060311   6.979274    -0.30   0.768    -15.73944    11.61881
                 |
        CorpLoan |
             L1. |   .1713231   1.325391     0.13   0.897    -2.426395    2.769041
                 |
     Ln_ContLiab |
             L1. |  -.0072898   .0602268    -0.12   0.904    -.1253323    .1107526
                 |
      OpExpOpRev |
             L1. |   .9642729   .6461956     1.49   0.136    -.3022473    2.230793
                 |
       Ln_Assets |
             L1. |   .1472428   .1319228     1.12   0.264    -.1113212    .4058068
                 |
             ROA |
             L1. |   13.01347   5.783117     2.25   0.024     1.678767    24.34817
                 |
           GDPGr |   .0652841   .4530557     0.14   0.885    -.8226888    .9532571
         GsecYld |    4.25321   4.160357     1.02   0.307     -3.90094    12.40736
             CMR |  -.4878538   2.104557    -0.23   0.817    -4.612709    3.637002
           _cons |  -.9568033   .6629169    -1.44   0.149    -2.256097    .3424899
    ------------------------------------------------------------------------------
    Instruments for first differences equation
      GMM-type (missing=0, separate instruments for each period unless collapsed)
        L2.(NIM CAR_T1 Ln_ContLiab OpExpOpRev GNPARatio ROA) collapsed
        L2.Ln_Loss_CC collapsed
    Instruments for levels equation
      Standard
        L.Pub_Dummy L.PCR L.Ln_Assets GDPGr GsecYld CMR
        Year4 Year5 Year13 Year14 Year15 Year16
        _cons
      GMM-type (missing=0, separate instruments for each period unless collapsed)
        DL.(NIM CAR_T1 Ln_ContLiab OpExpOpRev GNPARatio ROA) collapsed
        DL.Ln_Loss_CC collapsed
    ------------------------------------------------------------------------------
    Arellano-Bond test for AR(1) in first differences: z =  -2.65  Pr > z =  0.008
    Arellano-Bond test for AR(2) in first differences: z =   1.37  Pr > z =  0.171
    ------------------------------------------------------------------------------
    Sargan test of overid. restrictions: chi2(11)   =  28.25  Prob > chi2 =  0.003
      (Not robust, but not weakened by many instruments.)
    Hansen test of overid. restrictions: chi2(11)   =  13.69  Prob > chi2 =  0.251
      (Robust, but weakened by many instruments.)
    
    Difference-in-Hansen tests of exogeneity of instrument subsets:
      GMM instruments for levels
        Hansen test excluding group:     chi2(4)    =   4.98  Prob > chi2 =  0.289
        Difference (null H = exogenous): chi2(7)    =   8.71  Prob > chi2 =  0.274
      gmm(Ln_Loss_CC, collapse lag(2 2))
        Hansen test excluding group:     chi2(9)    =  11.11  Prob > chi2 =  0.268
        Difference (null H = exogenous): chi2(2)    =   2.58  Prob > chi2 =  0.275
      iv(Year4 Year5 Year13 Year14 Year15 Year16, eq(level))
        Hansen test excluding group:     chi2(5)    =   5.89  Prob > chi2 =  0.317
        Difference (null H = exogenous): chi2(6)    =   7.80  Prob > chi2 =  0.253
      iv(L.Pub_Dummy L.PCR L.Ln_Assets GDPGr GsecYld CMR, eq(level))
        Hansen test excluding group:     chi2(5)    =   5.94  Prob > chi2 =  0.312
        Difference (null H = exogenous): chi2(6)    =   7.75  Prob > chi2 =  0.257
    Under such circumstances, kindly suggest me the right and logical way to proceed. Any inputs would be warmly appreciated.

    Thanks
    pankaj
Working...
X