Dear members
I am running the csdid regression as a robustness check for my staggered did results. However, I am not sure how to interpret the results produced by the csdid post-estimate commands. It is noteworthy that I have 18,951 firm-year observations, and when I ran the cddid regression, the number of observations dropped to 12,223. what caused this drop?
Here are the results of the csdid post estimation results:
1-estat pretrend
Pretend Test. H0 All Pre-treatment is equal to 0
chi2(66) = 1262.6064
p-value = 0.0000
Question 1) what does the p-value tell me about the treatment above?
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
2- Average Treatment Effect on Treated
------------------------------------------------------------------------------
| Coefficient Std. err. z P>|z| [95% conf. interval]
-------------+----------------------------------------------------------------
ATT | -.0205827 .0242701 -0.85 0.396 -.0681512 .026985
Question 2) does having insignificant p-value as indicated above suggest that is no concern of earlier treated firms having an impact on the later treated?
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
3- estat event
ATT by Periods Before and After treatment
Event Study:Dynamic effects
------------------------------------------------------------------------------
| Coefficient Std. err. z P>|z| [95% conf. interval]
-------------+----------------------------------------------------------------
Pre_avg | .0905568 .0280406 3.23 0.001 .0355982 .1455153
Post_avg | -.0150769 .0264718 -0.57 0.569 -.0669606 .0368069
Tm13 | -.2472415 .0541207 -4.57 0.000 -.3533162 -.1411668
Tm12 | -.1979252 .0367847 -5.38 0.000 -.270022 -.1258284
Tm11 | -.0110969 .044918 -0.25 0.805 -.0991346 .0769407
Tm10 | 1.027638 .0637626 16.12 0.000 .9026659 1.152611
Tm9 | .4128842 .221467 1.86 0.062 -.0211832 .8469515
Tm8 | .0482778 .1091105 0.44 0.658 -.1655749 .2621304
Tm7 | -.0006784 .0396747 -0.02 0.986 -.0784393 .0770826
Tm6 | -.050637 .1602308 -0.32 0.752 -.3646836 .2634096
Tm5 | .298256 .0836639 3.56 0.000 .1342778 .4622341
Tm4 | -.0624409 .0473203 -1.32 0.187 -.155187 .0303052
Tm3 | -.0016701 .0300503 -0.06 0.956 -.0605676 .0572274
Tm2 | -.018172 .018596 -0.98 0.328 -.0546195 .0182755
Tm1 | -.0199566 .0218704 -0.91 0.362 -.0628217 .0229086
Tp0 | -.0254588 .0161276 -1.58 0.114 -.0570684 .0061507
Tp1 | .0139025 .0237889 0.58 0.559 -.032723 .060528
Tp2 | -.0172645 .0241829 -0.71 0.475 -.0646622 .0301332
Tp3 | -.02495 .0364027 -0.69 0.493 -.096298 .046398
Tp4 | -.0542365 .0341698 -1.59 0.112 -.1212081 .0127352
Tp5 | -.0217989 .0336454 -0.65 0.517 -.0877426 .0441449
Tp6 | -.042868 .0440775 -0.97 0.331 -.1292584 .0435224
Tp7 | -.0465764 .0360253 -1.29 0.196 -.1171848 .0240319
Tp8 | -.0087139 .0332699 -0.26 0.793 -.0739218 .056494
Tp9 | .0031924 .0312295 0.10 0.919 -.0580163 .0644011
Tp10 | -.0214046 .0406333 -0.53 0.598 -.1010445 .0582353
Tp11 | .0467994 .0410415 1.14 0.254 -.0336405 .1272393
Tp12 | -.0299339 .1034559 -0.29 0.772 -.2327039 .172836
Tp13 | .018235 .0980668 0.19 0.852 -.1739724 .2104423
question 3) can i conclude that the policy implantation has a negative effect of on the treated posted treatment?
thank you immensely for your insights.
I am running the csdid regression as a robustness check for my staggered did results. However, I am not sure how to interpret the results produced by the csdid post-estimate commands. It is noteworthy that I have 18,951 firm-year observations, and when I ran the cddid regression, the number of observations dropped to 12,223. what caused this drop?
Here are the results of the csdid post estimation results:
1-estat pretrend
Pretend Test. H0 All Pre-treatment is equal to 0
chi2(66) = 1262.6064
p-value = 0.0000
Question 1) what does the p-value tell me about the treatment above?
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
2- Average Treatment Effect on Treated
------------------------------------------------------------------------------
| Coefficient Std. err. z P>|z| [95% conf. interval]
-------------+----------------------------------------------------------------
ATT | -.0205827 .0242701 -0.85 0.396 -.0681512 .026985
Question 2) does having insignificant p-value as indicated above suggest that is no concern of earlier treated firms having an impact on the later treated?
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
3- estat event
ATT by Periods Before and After treatment
Event Study:Dynamic effects
------------------------------------------------------------------------------
| Coefficient Std. err. z P>|z| [95% conf. interval]
-------------+----------------------------------------------------------------
Pre_avg | .0905568 .0280406 3.23 0.001 .0355982 .1455153
Post_avg | -.0150769 .0264718 -0.57 0.569 -.0669606 .0368069
Tm13 | -.2472415 .0541207 -4.57 0.000 -.3533162 -.1411668
Tm12 | -.1979252 .0367847 -5.38 0.000 -.270022 -.1258284
Tm11 | -.0110969 .044918 -0.25 0.805 -.0991346 .0769407
Tm10 | 1.027638 .0637626 16.12 0.000 .9026659 1.152611
Tm9 | .4128842 .221467 1.86 0.062 -.0211832 .8469515
Tm8 | .0482778 .1091105 0.44 0.658 -.1655749 .2621304
Tm7 | -.0006784 .0396747 -0.02 0.986 -.0784393 .0770826
Tm6 | -.050637 .1602308 -0.32 0.752 -.3646836 .2634096
Tm5 | .298256 .0836639 3.56 0.000 .1342778 .4622341
Tm4 | -.0624409 .0473203 -1.32 0.187 -.155187 .0303052
Tm3 | -.0016701 .0300503 -0.06 0.956 -.0605676 .0572274
Tm2 | -.018172 .018596 -0.98 0.328 -.0546195 .0182755
Tm1 | -.0199566 .0218704 -0.91 0.362 -.0628217 .0229086
Tp0 | -.0254588 .0161276 -1.58 0.114 -.0570684 .0061507
Tp1 | .0139025 .0237889 0.58 0.559 -.032723 .060528
Tp2 | -.0172645 .0241829 -0.71 0.475 -.0646622 .0301332
Tp3 | -.02495 .0364027 -0.69 0.493 -.096298 .046398
Tp4 | -.0542365 .0341698 -1.59 0.112 -.1212081 .0127352
Tp5 | -.0217989 .0336454 -0.65 0.517 -.0877426 .0441449
Tp6 | -.042868 .0440775 -0.97 0.331 -.1292584 .0435224
Tp7 | -.0465764 .0360253 -1.29 0.196 -.1171848 .0240319
Tp8 | -.0087139 .0332699 -0.26 0.793 -.0739218 .056494
Tp9 | .0031924 .0312295 0.10 0.919 -.0580163 .0644011
Tp10 | -.0214046 .0406333 -0.53 0.598 -.1010445 .0582353
Tp11 | .0467994 .0410415 1.14 0.254 -.0336405 .1272393
Tp12 | -.0299339 .1034559 -0.29 0.772 -.2327039 .172836
Tp13 | .018235 .0980668 0.19 0.852 -.1739724 .2104423
question 3) can i conclude that the policy implantation has a negative effect of on the treated posted treatment?
thank you immensely for your insights.
Comment