Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Taylor Rule Estimation with GMM

    Hi, I'm trying to do a gym regression on a Taylor rule with smoothing parameter, but I cannot get the matrix to converge.
    This is my code
    gmm (ESTER-((1-{b1})*({b2}+HICP*{b3}+GDPGAP*{b4})+ l1.ESTER*{b1})), igmm instruments(L(1/4).HICP L(1/4).GDPGAP L(1/4).ESTER L(1/4).CMP L(1/4).M03) wmatrix(hac bartlett opt) variables(HICP GDPGAP ESTER) vce(hac bartlett opt)

    and this is what I get:
    Step 1
    Iteration 0: GMM criterion Q(b) = 4.5181651
    Iteration 1: GMM criterion Q(b) = .01089994
    Iteration 2: GMM criterion Q(b) = .00591039
    Iteration 3: GMM criterion Q(b) = .00591039

    ....

    Step 300
    Iteration 0: GMM criterion Q(b) = .07218202
    Iteration 1: GMM criterion Q(b) = .07218201

    note: maximum number of GMM iterations reached.

    GMM estimation

    Number of parameters = 4
    Number of moments = 21
    Initial weight matrix: Unadjusted Number of obs = 196
    GMM weight matrix: HAC Bartlett 20
    (lags chosen by Newey–West)

    ------------------------------------------------------------------------------
    | HAC
    | Coefficient std. err. z P>|z| [95% conf. interval]
    -------------+----------------------------------------------------------------
    /b1 | .9699711 .004906 197.71 0.000 .9603556 .9795866
    /b2 | -3.656506 .5887776 -6.21 0.000 -4.810489 -2.502523
    /b3 | 2.419334 .3795486 6.37 0.000 1.675433 3.163236
    /b4 | .0747057 .1326703 0.56 0.573 -.1853232 .3347347
    ------------------------------------------------------------------------------
    HAC standard errors based on Bartlett kernel with 20 lags.
    Lags chosen by Newey–West method.
    Instruments for equation 1: L.HICP L2.HICP L3.HICP L4.HICP L.GDPGAP L2.GDPGAP L3.GDPGAP L4.GDPGAP L.ESTER
    L2.ESTER L3.ESTER L4.ESTER L.CMP L2.CMP L3.CMP L4.CMP L.M03 L2.M03 L3.M03 L4.M03 _cons
    Warning: Convergence not achieved.

    I don't think this happens because my moments are more than the parameters, because I've seen others do the regression and get a result with the same structure. what can I do?
Working...
X