Dear Statalists,
I am working with survey database. I have run the next logit regression for a subsample of my data, where the dependent variable (fin11) is a binary one. Furthermore, i am including fixed effects at industry level (i.isic).
This is the ouput of the regression:
It can be see that some of the levels of the industry fixed effects are not estimated, because for those omitted industries there is only one observation for which the covariates and the dependent variable do not take missing value.
I am interested on obtaining average marginal effects of all covariates, so I run the next code:
And this is the output:
It can be seen that I do not get the margins of the industry fixed effects, even for those industries that did not be omitted in the logit regression. However, I got it for the covariates. Is this issue a major problem? I mean, it is legitimate to use the margins that I have got for the covariates?
Finally, I have a doubt regarding subpop command. The number of observations in th elogit regression is 122,771, meanwhile in the margins estimation 34,083, why such a big difference?
Thank you,
Ibai
I am working with survey database. I have run the next logit regression for a subsample of my data, where the dependent variable (fin11) is a binary one. Furthermore, i am including fixed effects at industry level (i.isic).
Code:
svyset, clear svyset idstd [pweight=wt], strata(strata) singleunit(scaled) svy, subpop(if loan_duration<=4 & k8==100): logit fin11 i.n_outcome lcar1 lnemployees i.ownership i.k9 ln_dlabproduc_2 k7 k21 k3a i.isic
Code:
note: 11b.isic != 0 predicts success perfectly 11b.isic dropped and 1 obs not used note: 12.isic != 0 predicts failure perfectly 12.isic dropped and 1 obs not used note: 65.isic != 0 predicts failure perfectly 65.isic dropped and 2 obs not used note: 71.isic != 0 predicts success perfectly 71.isic dropped and 1 obs not used note: 93.isic != 0 predicts success perfectly 93.isic dropped and 1 obs not used note: 74.isic omitted because of collinearity Survey: Logistic regression Number of strata = 1,023 Number of obs = 122,771 Number of PSUs = 122,771 Population size = 7,992,600 Subpop. no. obs = 27,735 Subpop. size = 1,453,296 Design df = 121,748 F( 46, 121703) = 3.59 Prob > F = 0.0000 --------------------------------------------------------------------------------------------------------- | Linearized fin11 | Coef. Std. Err. t P>|t| [95% Conf. Interval] ----------------------------------------+---------------------------------------------------------------- 1.n_outcome | -.3410065 .1234849 -2.76 0.006 -.5830349 -.0989782 lcar1 | .097119 .1033377 0.94 0.347 -.1054212 .2996592 lnemployees | .2238808 .0475924 4.70 0.000 .1306004 .3171612 | ownership | Foreign | .3300358 .1857271 1.78 0.076 -.0339862 .6940577 | k9 | State-owned banks or government agency | .4543845 .174829 2.60 0.009 .1117225 .7970466 Non-bank financial institutions | -.1643362 .2303354 -0.71 0.476 -.6157898 .2871173 Other | -1.502558 .30923 -4.86 0.000 -2.108644 -.8964726 | ln_dlabproduc_2 | .0548861 .0094919 5.78 0.000 .0362822 .0734899 k7 | -.2306878 .1387156 -1.66 0.096 -.502568 .0411924 k21 | .2545136 .117209 2.17 0.030 .024786 .4842413 k3a | -.5454588 .1690183 -3.23 0.001 -.876732 -.2141857 | isic | 11 | 0 (empty) 12 | 0 (empty) 15 | .5761103 .8422641 0.68 0.494 -1.074713 2.226934 16 | .5525625 .9970459 0.55 0.579 -1.401631 2.506756 17 | .2459134 .8569859 0.29 0.774 -1.433765 1.925592 18 | .4972503 .8647682 0.58 0.565 -1.197681 2.192182 19 | .6810023 .9549176 0.71 0.476 -1.19062 2.552625 20 | .5277384 .9299466 0.57 0.570 -1.294942 2.350418 21 | -.2068407 .9720362 -0.21 0.831 -2.112016 1.698334 22 | .1737072 .925783 0.19 0.851 -1.640812 1.988227 23 | 1.525126 1.239943 1.23 0.219 -.9051413 3.955392 24 | .3956102 .8714038 0.45 0.650 -1.312327 2.103547 25 | .8913126 .8912435 1.00 0.317 -.85551 2.638135 26 | .949387 .8757977 1.08 0.278 -.767162 2.665936 27 | .2927997 .9028069 0.32 0.746 -1.476687 2.062286 28 | .7221179 .8472834 0.85 0.394 -.9385435 2.382779 29 | .4974671 .8955593 0.56 0.579 -1.257814 2.252749 30 | 3.646133 1.43535 2.54 0.011 .8328701 6.459396 31 | .4336457 .8994272 0.48 0.630 -1.329217 2.196508 32 | 1.546787 1.064917 1.45 0.146 -.5404316 3.634006 33 | .4358964 .9968934 0.44 0.662 -1.517998 2.389791 34 | .3470953 .9126551 0.38 0.704 -1.441694 2.135884 35 | 1.621231 1.055895 1.54 0.125 -.4483058 3.690768 36 | .7194533 .9259729 0.78 0.437 -1.095438 2.534345 37 | 1.731182 1.203947 1.44 0.150 -.6285341 4.090899 45 | .6625817 .8719648 0.76 0.447 -1.046455 2.371618 50 | .9029901 .8975743 1.01 0.314 -.8562407 2.662221 51 | .5655833 .8539491 0.66 0.508 -1.108143 2.239309 52 | .6118768 .8502834 0.72 0.472 -1.054665 2.278418 55 | .6197807 .8848717 0.70 0.484 -1.114553 2.354115 60 | .8436712 .8972863 0.94 0.347 -.9149952 2.602338 61 | 2.158662 1.097073 1.97 0.049 .0084165 4.308908 62 | 1.178337 1.22349 0.96 0.336 -1.219683 3.576358 63 | .5864199 .8711842 0.67 0.501 -1.121087 2.293927 64 | .6458872 1.009906 0.64 0.522 -1.333513 2.625287 65 | 0 (empty) 70 | 2.118628 1.332885 1.59 0.112 -.4938037 4.73106 71 | 0 (empty) 72 | .5602221 .9209123 0.61 0.543 -1.244751 2.365195 74 | 0 (omitted) 93 | 0 (empty) | _cons | -1.411011 .8950048 -1.58 0.115 -3.165206 .3431832 --------------------------------------------------------------------------------------------------------- Note: 222 strata omitted because they contain no subpopulation members. Note: Variance scaled to handle strata with a single sampling unit.
I am interested on obtaining average marginal effects of all covariates, so I run the next code:
Code:
margins, dydx(*)
Code:
Average marginal effects Number of obs = 34,083 Model VCE : Linearized Expression : Pr(fin11), predict() dy/dx w.r.t. : 1.n_outcome lcar1 lnemployees 1.ownership 2.k9 3.k9 4.k9 ln_dlabproduc_2 k7 k21 k3a 12.isic 15.isic 16.isic 17.isic 18.isic 19.isic 20.isic 21.isic 22.isic 23.isic 24.isic 25.isic 26.isic 27.isic 28.isic 29.isic 30.isic 31.isic 32.isic 33.isic 34.isic 35.isic 36.isic 37.isic 45.isic 50.isic 51.isic 52.isic 55.isic 60.isic 61.isic 62.isic 63.isic 64.isic 65.isic 70.isic 71.isic 72.isic 74.isic 93.isic --------------------------------------------------------------------------------------------------------- | Delta-method | dy/dx Std. Err. t P>|t| [95% Conf. Interval] ----------------------------------------+---------------------------------------------------------------- 1.n_outcome | -.0723683 .0266629 -2.71 0.007 -.1246271 -.0201094 lcar1 | .0203329 .0216112 0.94 0.347 -.0220248 .0626906 lnemployees | .0468718 .009898 4.74 0.000 .0274719 .0662717 | ownership | Foreign | .0665421 .0357958 1.86 0.063 -.003617 .1367013 | k9 | State-owned banks or government agency | .0935447 .034765 2.69 0.007 .0254059 .1616834 Non-bank financial institutions | -.0362868 .051395 -0.71 0.480 -.1370201 .0644465 Other | -.3274578 .0584824 -5.60 0.000 -.4420823 -.2128332 | ln_dlabproduc_2 | .011491 .0019731 5.82 0.000 .0076238 .0153581 k7 | -.0482969 .028923 -1.67 0.095 -.1049856 .0083917 k21 | .0532851 .0244308 2.18 0.029 .0054011 .1011692 k3a | -.1141976 .0351164 -3.25 0.001 -.1830252 -.0453699 | isic | 11 | 0 (empty) 12 | . (not estimable) 15 | . (not estimable) 16 | . (not estimable) 17 | . (not estimable) 18 | . (not estimable) 19 | . (not estimable) 20 | . (not estimable) 21 | . (not estimable) 22 | . (not estimable) 23 | . (not estimable) 24 | . (not estimable) 25 | . (not estimable) 26 | . (not estimable) 27 | . (not estimable) 28 | . (not estimable) 29 | . (not estimable) 30 | . (not estimable) 31 | . (not estimable) 32 | . (not estimable) 33 | . (not estimable) 34 | . (not estimable) 35 | . (not estimable) 36 | . (not estimable) 37 | . (not estimable) 45 | . (not estimable) 50 | . (not estimable) 51 | . (not estimable) 52 | . (not estimable) 55 | . (not estimable) 60 | . (not estimable) 61 | . (not estimable) 62 | . (not estimable) 63 | . (not estimable) 64 | . (not estimable) 65 | . (not estimable) 70 | . (not estimable) 71 | . (not estimable) 72 | . (not estimable) 74 | . (not estimable) 93 | . (not estimable) --------------------------------------------------------------------------------------------------------- Note: dy/dx for factor levels is the discrete change from the base level.
It can be seen that I do not get the margins of the industry fixed effects, even for those industries that did not be omitted in the logit regression. However, I got it for the covariates. Is this issue a major problem? I mean, it is legitimate to use the margins that I have got for the covariates?
Finally, I have a doubt regarding subpop command. The number of observations in th elogit regression is 122,771, meanwhile in the margins estimation 34,083, why such a big difference?
Thank you,
Ibai