Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Interpretation of a panel data ols coefficient with time and year fixed effects

    Hi,

    I have a problem related to understanding a coefficient of a regression I have made.

    Some of the variables in my dataset looks like this: "SKDchange" is the variable of interest as dependent variable, while I struggle to interpret the diff1Equity variable. The regression in on changes-changes form where both the explanatory and dependent variable measures the change from t-1 to t.

    My regression code looks like this:
    reg SKDchange diff1Bokførtavkastning diff1Verdijustertavkastning diff1Diff diff1NPVrentegar diff1Duration diff1Innskutt_EK diff1Annen_EK diff1Tilleggsavsetning diff1Kursreguleringsfond diff1Premiefond diff1Equity diff1IG diff1HY diff1HF diff1PE diff1Eiendom i.Year i.id, vce(cluster id Year)


    Code:
    * Example generated by -dataex-. For more info, type help dataex
    clear
    input float(diff1Equity diff1IG diff1Duration SKDchange)
               .            .             .     .
       .04754161   -.09403566     -.1599999   -.3
      -.02064644  -.018740425     .54999995  -.14
      .010813517   -.01095776          -.25  -.02
     -.026318334  -.002717563           .71  -.29
       .05093006  -.005377363          -.43  -.12
    -.0011152852  -.013379592     .13000004   .07
     -.024114784    .04315393    .029999923   .27
       .02377115   -.04732417           .48   .16
     -.030893333    .03741644     .22999993   .12
       .02928274    .02414991          1.65    .3
      .001455957  .0004799768     .26000005   .22
      .004779475    .00558187    -.27000016  -.07
               .            .             .     .
      -.00512642   .004711266    -.10917584  -.07
     -.063273735    .04655176     .26596162  -.18
       .02563643   -.02877299         -.355  -.03
      -.04105696    .15782078     -.2039706   .19
      .009601564  -.010468778     .10676478  -.41
       .02057601    .02437022     .11147057   .14
       .02281441  -.012794206   -.011764593   .04
       -.1235865    .11275683          1.35   .08
      -.04838456 -.0012550277         -2.28  -.17
    -.0041883523    .01323345          3.05   .43
      .012058506  -.015719667    -2.0700002   .09
     -.005533226 -.0021816033          1.45   .03
               .            .             .     .
       .06241516   -.05142799    -.19732134  -.04
    -.0014952082  -.001770217      .9085715  -.91
       .04270349   -.06381753     -.7399999   .52
       .09990668   -.11121875     .32000005   -.2
      -.02076794   -.02086097      .6300001   .24
       .02764053    -.1214763         -1.75   .61
      -.04209387   -.03557081     .03099999  -.29
       .02711773   -.08156485      .2990001  -.05
      -.04882512    .06585504     .28000006  -.12
      -.04681846    .05470577      .2000001   .05
       .11536504   -.07811742     .20000005   .09
       .06964771   .013372925           -.8  -.15
               .            .             .     .
       -.0887506   .031709056      .8700001  -.13
      -.08438469    -.4525758     .05999994  -.26
       .02664301  -.007119911            -1  -.05
     .0045617344    .02329633             0   .06
    -.0021377348    .04008004         -1.43   .26
      -.01407777    .03055194    -.16999993  -.04
      .010314748   -.02585671         -1.76   .16
       .02583596   .031915076 -5.960464e-10   .07
      -.01983064  -.014577777          2.63  -.23
    -.0041912617     .1929425     .13833335   .01
      -.08911186    -.2353105     .06904765   .51
      .032503515    .04405855       .286619   .01
               .            .             .     .
       .02059753    .00604589    -1.4834615   .33
     -.012380703   -.06797267      .5134616  -.41
      .016461588   .018263668          -2.8   .19
     -.016667238   .001590435            .1    .3
     -.024444895   .024264194           .75   .23
      .007214402  -.013604298          1.56  -.51
        .1661422   -.08117536     -.8400001   .09
       .03991343   -.04297239     .10000005  -.21
        .0945853    -.1083463  2.384186e-08  -.11
       .09561862   -.10853375    -.09999998   -.2
       -.3036081    .27654004            .4   .83
        .0191042   -.04063289      .4999999  -.18
               .            .             .     .
      .028694145   -.07184994     -.4087499  1.04
      -.11852485   .065436386     -.2100001   .83
       .06047443   -.08638582           -.3   .08
      -.00934424   .008003984    -.19999997  -.12
       .05878297    .05886357     .19999996  -.66
      -.03458966    .04444094            .2  -.02
      -.01792603    -.0598651     -.6999999   .85
      .009644688    .03987899           -.3  -.93
      .004996592  -.006057756 -2.384186e-08  -.17
     .0002828524   -.10505882            .4   .61
      -.01864195  -.002772984          -.14  1.31
      .031855654    .08679447          1.01 -1.65
               .            .             .     .
      .012399666    .06262513    -.19732134    .1
      -.22266704   -.05568459    -.07587294   .19
        .1560319    .11884157    .022385584  -.44
       .03940175   .016805476    -.28460786  -.34
      .017667945   -.04138368     -.3033333   .12
     -.007013578  .0078530125    -.52000004   .56
      -.06908407     -.072072      .6799999   .34
       .06103085    .04783031      .2599999   .17
      -.02623497    .07248117     -.1000001   .19
       .04369584   -.03614791     .57000005   -.1
       .02110185   -.04804264     1.0100001  -.05
        .0099649 -.0017389223     .11999989  -.15
               .            .             .     .
       .08086738  -.014327994    -.10917584  -.58
      -.12395176   -.05033401     .26596162  -.05
      -.15088338    .13968238         -.355   .19
       .04139739    .20281895     -.2039706  -.15
      .035840575   -.16239823     .10676478  -.17
       .11057469  .0003425852     .11147057   -.2
     -.005472437   -.02754408   -.011764593   .17
       .03027286    .05957837         -2.28   .13
    end
    What I get out of the regression is shown in the attachment. What I don't totally is how to interpret the coefficients for diff1duration which is measured in years, and diff1Equity against the dependent variable SKDchange. (I do not understand diff1IG etc. either but the interpretation would be the same as for diff1Equity). Any help is greatly appreciated.
    Attached Files
Working...
X