Hello,
I am using lincom to aggregate the results of my difference in difference model using the estimator from Sun and Abraham (2020).
I would like to do a coefplot of the estimated aggregated estimate from lincom. Does anyone konw how I can do it?
take the following example.
In sum, I have my two regressions on different DVs and I do the lincom of post treatment effects. I would like to plot these results using coefplot. does anyone knows how to do it?
thanks a lot
I am using lincom to aggregate the results of my difference in difference model using the estimator from Sun and Abraham (2020).
I would like to do a coefplot of the estimated aggregated estimate from lincom. Does anyone konw how I can do it?
take the following example.
Code:
eventstudyinteract dv1 $eventtt182 if anytrai==1, vce(cluster prod) > absorb(prod yr rsph audcmp audseq auditann) cohort(yr_first_post_trai182) control > _cohort(lastcohort182) (obs=4,883) IW estimates for dynamic effects Number of obs = 5,913 Absorbing 6 HDFE groups F(21, 2228) = 2.09 Prob > F = 0.0026 R-squared = 0.6140 Adj R-squared = 0.2464 Root MSE = 0.3800 (Std. err. adjusted for 2,229 clusters in prod) ------------------------------------------------------------------------------ | Robust auditratin~s | Coefficient std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- L0ttt182 | .1218806 .040001 3.05 0.002 .0434374 .2003238 L1ttt182 | .2393228 .0596118 4.01 0.000 .1224224 .3562232 L2ttt182 | .1201224 .0668075 1.80 0.072 -.0108891 .2511339 F2ttt182 | .0404785 .0425113 0.95 0.341 -.0428875 .1238445 F3ttt182 | .0675974 .0537379 1.26 0.209 -.0377842 .172979 F4ttt182 | .0120441 .0752037 0.16 0.873 -.1354326 .1595208 ------------------------------------------------------------------------------ * Following the .shape file of `eventstudyinteract` I use the `lincom` command to aggregate event study estimates. matrix b = e(b_iw) . matrix V = e(V_iw) . ereturn post b V . lincom (L0ttt182 + L1ttt182 + L2ttt182)/3 ( 1) .3333333*L0ttt182 + .3333333*L1ttt182 + .3333333*L2ttt182 = 0 ------------------------------------------------------------------------------ | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- (1) | .1604419 .0484821 3.31 0.001 .0654187 .2554652 ------------------------------------------------------------------------------ * Now I run the same model on a different dependent variable . eventstudyinteract dv2 $eventtt182 if anytrai==1, vce(cluster p > rod) absorb(prod yr rsph audcmp audseq auditann) cohort(yr_first_post_trai182) co > ntrol_cohort(lastcohort182) (obs=4,883) IW estimates for dynamic effects Number of obs = 5,913 Absorbing 6 HDFE groups F(21, 2228) = 1.10 Prob > F = 0.3449 R-squared = 0.5438 Adj R-squared = 0.1093 Root MSE = 0.3491 (Std. err. adjusted for 2,229 clusters in prod) ------------------------------------------------------------------------------ | Robust par~inv_pass | Coefficient std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- L0ttt182 | .0461567 .0343948 1.34 0.180 -.0212925 .1136059 L1ttt182 | .054493 .0552511 0.99 0.324 -.053856 .1628419 L2ttt182 | .0184704 .0557928 0.33 0.741 -.090941 .1278818 F2ttt182 | .0150241 .0393211 0.38 0.702 -.0620857 .0921339 F3ttt182 | -.0337918 .0490002 -0.69 0.491 -.1298825 .062299 F4ttt182 | -.006068 .066574 -0.09 0.927 -.1366216 .1244855 ------------------------------------------------------------------------------ . end of do-file . do "/var/folders/d8/4ly8xgqn22bc36_bmmy54625n0kgs3/T//SD55008.000000" . */ . matrix b = e(b_iw) . matrix V = e(V_iw) . ereturn post b V . lincom (L0ttt182 + L1ttt182 + L2ttt182)/3 ( 1) .3333333*L0ttt182 + .3333333*L1ttt182 + .3333333*L2ttt182 = 0 ------------------------------------------------------------------------------ | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- (1) | .0397067 .0428879 0.93 0.355 -.0443521 .1237655 ------------------------------------------------------------------------------ * here I would like to create my coefplot with the impact of my aggregated treatment effect on the two different dependent variables.
thanks a lot
Comment