Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • find lag time between peaks and troughs in time series data

    Hello,

    I have this time series data looking at whether food contamination in a school district led to incidence of hospitalizations. I have already conducted other analysis but I am looking to find the lag time between peaks and troughs of food contamination with the incidence of hospitalizations. Does anyone know how to do this easily? I was using the below code which is not at all giving me what I want.


    tsset id
    dfuller numberofincidents, trend lag(2)
    varbasic numberofincidents foodcontamination , lag(1)



    Code:
    * Example generated by -dataex-. For more info, type help dataex
    clear
    input int WeekOf byte id float(numberofincidents foodcontamination)
    22283   1   0 102.41084
    22290   2  20 74.084435
    22297   3   0  61.01071
    22304   4  20 34.863262
    22311   5   0 17.431631
    22318   6   0 15.252678
    22325   7  20 17.431631
    22332   8   0  10.89477
    22339   9   0  10.89477
    22346  10   0 13.073724
    22353  11   0  6.536862
    22360  12   0 13.073724
    22367  13   0 19.610586
    22374  14  20 30.505356
    22381  15   0   28.3264
    22388  16  40   28.3264
    22395  17   0 15.252678
    22402  18  20  6.536862
    22409  19   0  6.536862
    22416  20   0  8.715816
    22423  21  20  10.89477
    22430  22  20  2.178954
    22437  23   0  2.178954
    22444  24   0  4.357908
    22451  25   0  6.536862
    22458  26   0  6.536862
    22465  27   0 15.252678
    22472  28  20 17.431631
    22479  29  20 74.084435
    22486  30  40  78.44234
    22493  31  80  56.65281
    22500  32  20 69.726524
    22507  33  60  71.90548
    22514  34  40  54.47385
    22521  35   0  71.90548
    22528  36  20  98.05293
    22535  37   0   80.6213
    22542  38   0  87.15816
    22549  39   0  50.11594
    22556  40   0  32.68431
    22563  41   0  32.68431
    22570  42   0 30.505356
    22577  43   0  41.40013
    22584  44   0  56.65281
    22591  45   0 74.084435
    22598  46  20  61.01071
    22605  47   0 135.09515
    22612  48   0  93.69502
    22619  49  20  93.69502
    22626  50  20 296.33774
    22633  51  20  745.2023
    22640  52  60 1056.7927
    22647  53   0  858.5079
    22654  54  60  623.1808
    22661  55  60  437.9698
    22668  56  60 274.54822
    22675  57  60   189.569
    22682  58   0 102.41084
    22689  59  20  78.44234
    22696  60   0  65.36862
    22703  61   0  47.93699
    22710  62  20  50.11594
    22717  63  20  61.01071
    22724  64   0  93.69502
    22731  65   0  132.9162
    22738  66   0 204.82167
    22745  67   0 211.35854
    22752  68  40  222.2533
    22759  69   0  392.2117
    22766  70  20  394.3907
    22773  71   0  416.1802
    22780  72  60  418.3592
    22787  73  20  337.7379
    22794  74  20  385.6749
    22801  75  40  366.0643
    22808  76  40  383.4959
    22815  77  80  372.6011
    22822  78  20  337.7379
    22829  79  20 268.01135
    22836  80  60  350.8116
    22843  81  20 324.66415
    22850  82  60  344.2747
    22857  83  60 300.69565
    22864  84  40 300.69565
    22871  85  20  246.2218
    22878  86  40 211.35854
    22885  87   0 220.07436
    22892  88  20  265.8324
    22899  89  40  246.2218
    22906  90   0  209.1796
    22913  91  60  180.8532
    22920  92  20  185.2111
    22927  93  20  185.2111
    22934  94  60  169.9584
    22941  95 160  165.6005
    22948  96  40  165.6005
    22955  97  20 102.41084
    22962  98 120 159.06364
    22969  99 120 119.84247
    22976 100  20 176.49527
    end
    format %tdnn/dd/CCYY WeekOf
Working...
X