Hello,
I would like to create 3 tables twith the number of indivduals (in all waves 1 to 5) that reported abused==1 in the follwoing case:
Table 1:
- rows defined by :
- total individuals, only male and only female
- total indivoiduals, male and female when sinmastatus_ab = 1
- total indivoiduals, male and female when partnsersh_ab = 1
- total indivoiduals, male and female when sepstatus_ab = 1
- total ndivoiduals, male and female when widowed_ab==1
- columns defined by:
- the total number of individuals that reported abused==1 in the above 3 cases separated by "group_age" and then by "country"
Table 2: the above information but only for individuals that reported fulltime_ab==1
Table 3: the initial information but only for individuals that reported parttime_ab==1
I now how to perform the analysis separately but it is time consuming since the dataset in very large.
I attached a picture of the table (upper table) with the outcome that I need to achieve with the required commands.
Thank you very much in advance.
I would like to create 3 tables twith the number of indivduals (in all waves 1 to 5) that reported abused==1 in the follwoing case:
Table 1:
- rows defined by :
- total individuals, only male and only female
- total indivoiduals, male and female when sinmastatus_ab = 1
- total indivoiduals, male and female when partnsersh_ab = 1
- total indivoiduals, male and female when sepstatus_ab = 1
- total ndivoiduals, male and female when widowed_ab==1
- columns defined by:
- the total number of individuals that reported abused==1 in the above 3 cases separated by "group_age" and then by "country"
Table 2: the above information but only for individuals that reported fulltime_ab==1
Table 3: the initial information but only for individuals that reported parttime_ab==1
I now how to perform the analysis separately but it is time consuming since the dataset in very large.
I attached a picture of the table (upper table) with the outcome that I need to achieve with the required commands.
Thank you very much in advance.
Code:
* Example generated by -dataex-. For more info, type help dataex clear input long pidp byte sex float wave byte country float(group_age fulltime_ab parttime_ab sinmastatus_ab partnersh_ab sepstatus_ab widowed_ab abused) 410355535 1 1 1 1 0 0 0 0 0 0 0 816639891 2 2 1 1 0 0 0 0 0 0 0 340005455 2 2 1 1 0 0 0 0 0 0 0 952701767 2 2 1 1 0 0 0 0 0 0 0 1632297171 1 3 1 1 0 0 0 0 0 0 0 1170321010 2 5 1 1 0 0 0 0 0 0 0 1224910539 1 3 1 1 0 0 0 0 0 0 0 1428712663 1 2 1 1 0 0 0 0 0 0 0 748128535 1 2 1 1 0 0 0 0 0 0 0 476830975 1 2 1 1 0 0 0 0 0 0 0 1295801964 2 1 1 1 0 0 0 0 0 0 0 408142815 2 2 1 1 0 0 0 0 0 0 0 272378783 2 5 1 1 0 0 0 0 0 0 0 340607259 1 1 1 1 0 0 0 0 0 0 0 544602499 1 5 1 1 0 0 0 0 0 0 0 544374007 2 2 1 1 0 0 0 0 0 0 0 408541299 1 2 1 1 0 0 0 0 0 0 0 1224163895 2 1 1 1 0 0 0 0 0 0 0 818917889 1 2 1 1 0 0 0 0 0 0 0 885927135 1 2 1 1 0 0 0 0 0 0 0 204243459 2 2 1 1 0 0 0 0 0 0 0 751793049 2 2 1 1 0 0 0 0 0 0 0 340947259 1 1 1 1 0 0 0 0 0 0 0 884224415 2 1 1 1 0 0 0 0 0 0 0 612221695 1 1 1 1 0 0 0 0 0 0 0 69426667 1 5 1 1 0 0 0 0 0 0 0 1089646295 2 4 1 1 0 0 0 0 0 0 0 1293532743 2 5 1 1 0 0 0 0 0 0 0 205203619 1 4 1 1 0 0 0 0 0 0 0 551289766 1 2 1 1 0 0 0 0 0 0 0 1428870415 2 2 1 1 0 0 0 0 0 0 0 1031464890 1 3 1 1 0 0 0 0 0 0 0 952262495 2 2 1 1 0 0 0 0 0 0 0 477664675 2 2 1 1 0 0 0 0 0 0 0 479990253 1 5 1 1 0 0 0 0 0 0 0 1632070055 2 4 1 1 0 0 0 0 0 0 0 1428268627 2 3 1 1 0 0 0 0 0 0 0 952420247 1 3 1 1 0 0 0 0 0 0 0 1021668075 1 3 1 1 0 0 0 0 0 0 0 1292768415 2 4 1 1 0 0 0 0 0 0 0 1088238244 1 1 1 1 0 0 0 0 0 0 0 884805815 2 5 1 1 0 0 1 0 0 0 1 1224268619 2 3 1 1 0 0 0 0 0 0 0 1088206055 1 1 1 1 0 0 0 0 0 0 0 1020267939 1 1 1 1 0 0 0 0 0 0 0 205156693 1 1 1 1 0 0 0 0 0 0 0 612422979 1 3 1 1 0 0 0 0 0 0 0 680886739 2 5 1 1 0 0 0 0 0 0 0 1089740139 2 2 1 1 0 0 0 0 0 0 0 614503775 2 1 1 1 0 0 0 0 0 0 0 68361767 2 1 1 1 0 0 0 0 0 0 0 1511755770 1 4 1 1 0 0 0 0 0 0 0 68548095 1 4 1 1 0 0 0 0 0 0 0 681143775 1 2 1 1 0 0 0 0 0 0 0 1020214215 2 1 1 1 0 0 0 0 0 0 0 612006133 1 3 1 1 0 0 0 0 0 0 0 340358383 2 5 1 1 0 0 0 0 0 0 0 682065173 2 4 1 1 0 0 0 0 0 0 0 818114137 1 3 1 1 0 0 0 0 0 0 0 204268615 2 2 1 1 0 0 0 0 0 0 0 1634643855 2 3 1 1 0 0 0 0 0 0 0 408626295 2 3 1 1 0 0 0 0 0 0 0 1514115290 2 3 1 1 0 0 0 0 0 0 0 886843162 1 1 1 1 0 0 0 0 0 0 0 340992135 1 5 1 1 0 0 0 0 0 0 0 890883802 2 2 1 1 0 0 0 0 0 0 0 205958415 2 3 1 1 0 0 0 0 0 0 0 613518459 2 3 1 1 0 0 0 0 0 0 0 408425017 1 3 1 1 0 0 0 0 0 0 0 341420533 2 1 1 1 0 0 0 0 0 0 0 341665339 2 2 1 1 0 0 0 0 0 0 0 1496682739 2 1 1 1 0 0 0 0 0 0 0 342001935 2 1 1 1 0 0 0 0 0 0 0 689506684 1 2 1 1 0 0 0 0 0 0 0 817737413 1 2 1 1 0 0 0 0 0 0 0 340258419 1 4 1 1 0 0 0 0 0 0 0 136556931 2 2 1 1 0 0 0 0 0 0 0 205145815 2 3 1 1 0 0 0 0 0 0 0 272665731 2 1 1 1 0 0 0 0 0 0 0 68773855 2 2 1 1 0 0 0 0 0 0 0 205217972 2 3 1 1 0 0 0 0 0 0 0 1225884967 1 2 1 1 0 0 0 0 0 0 0 544180211 2 4 1 1 0 0 0 0 0 0 0 1428725579 1 2 1 1 0 0 0 0 0 0 0 1564510015 1 2 1 1 0 0 0 0 0 0 0 1020542655 1 4 1 1 0 0 0 0 0 0 0 1634214775 2 3 1 1 0 0 0 0 0 0 0 1224992135 2 2 1 1 0 0 0 0 0 0 0 1020449495 2 1 1 1 0 0 0 0 0 0 0 205862531 1 3 1 1 0 0 0 0 0 0 0 1225889735 1 2 1 1 0 0 0 0 0 0 0 682232453 1 3 1 1 0 0 0 0 0 0 0 204191775 1 1 1 1 0 0 0 0 0 0 0 343307533 1 2 1 1 0 0 0 0 0 0 0 958290448 2 2 1 1 0 0 0 0 0 0 0 1021560607 2 1 1 1 0 0 0 0 0 0 0 885394019 1 2 1 1 0 0 0 0 0 0 0 340297855 1 5 1 1 0 0 0 0 0 0 0 1428187699 2 2 1 1 0 0 0 0 0 0 0 1496868375 1 3 1 1 0 0 0 0 0 0 0 end label values sex c_sex label def c_sex 1 "male", modify label def c_sex 2 "female", modify label values country c_country label def c_country 1 "England", modify label values group_age group_age label def group_age 1 "25 >= age > 15", modify label values fulltime_ab fulltime_ab label def fulltime_ab 0 "full-time employee not abused at work", modify label values parttime_ab parttime_ab label def parttime_ab 0 "part-time employee not abuse at work", modify label values sinmastatus_ab sinmastatus_ab label def sinmastatus_ab 0 "single marital status: not abused at work", modify label def sinmastatus_ab 1 "single marital status: abused at work", modify label values partnersh_ab partnersh_ab label def partnersh_ab 0 " in partnership: not abused at work", modify label values sepstatus_ab sepstatus_ab label def sepstatus_ab 0 "separated status: not abused at work", modify label values widowed_ab widowed_ab label def widowed_ab 0 "widowed: not abused at work", modify label values abused abc label def abc 0 "not abused at work", modify label def abc 1 "abused at work", modify