Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Cubic Splines in Multilevel Growth Curve

    Hi, I am a PhD student working on a growth curve model of cohort differences in Y over part of the life course. I have a panel data set where everyone has minimum 3 waves of data. As there is almost no relationship between Y and age in the earlier ages and a strong relationship towards the end I am using cubic splines. This fit the model better than polynomials.

    Now to my question: I'm wondering whether I have to include all splines in the random effects part of the model or if I can use only the first (which is the same as age)?
    If I add in the other splines, the standard errors are missing when I specify unstructured covariance. The confidence interval of the standard errors is missing if I leave it independent. The splines have very small values in the output so I don't know that they need to be left in. I don't get any error messages or convergence issues. I get the same issue as below when removing the cohort variable from the model.

    Any guidance would be greatly appreciated!

    Age is centered at 65.

    Code:
    mkspline2 splines=age65, nknots(4) cubic displayknots
    
                 |     knot1      knot2      knot3      knot4 
    -------------+--------------------------------------------
           age65 |       -22         -7          6         19 
    
    
    mixed Y i.cohort##c.(splines*) || id:splines1, cov(unstr)
    Performing EM optimization ...
    
    Performing gradient-based optimization: 
    Iteration 0:   log likelihood = -5178.2427  
    Iteration 1:   log likelihood =  -5175.358  
    Iteration 2:   log likelihood = -5175.3567  
    Iteration 3:   log likelihood = -5175.3567  
    
    Computing standard errors ...
    
    Mixed-effects ML regression                     Number of obs     =      4,325
    Group variable: id                              Number of groups  =      1,026
                                                    Obs per group:
                                                                  min =          3
                                                                  avg =        4.2
                                                                  max =          6
                                                    Wald chi2(11)     =     481.52
    Log likelihood = -5175.3567                     Prob > chi2       =     0.0000
    
    -----------------------------------------------------------------------------------
              Y       | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
    ------------------+----------------------------------------------------------------
               cohort |
           1925-1934  |   .5331846   .1898017     2.81   0.005     .1611801    .9051892
           1935-1944  |   .5475112   .1825329     3.00   0.003     .1897534    .9052691
                      |
             splines1 |  -.0146993   .0094491    -1.56   0.120    -.0332192    .0038206
             splines2 |   .0690453   .0248748     2.78   0.006     .0202916    .1177991
             splines3 |  -.3160313   .0798572    -3.96   0.000    -.4725485    -.159514
                      |
    cohort#c.splines1 |
           1925-1934  |   .0243428   .0114487     2.13   0.033     .0019037    .0467819
           1935-1944  |   .0207229   .0110225     1.88   0.060    -.0008809    .0423267
                      |
    cohort#c.splines2 |
           1925-1934  |  -.0778835   .0309589    -2.52   0.012    -.1385618   -.0172051
           1935-1944  |  -.0487531    .029607    -1.65   0.100    -.1067818    .0092755
                      |
    cohort#c.splines3 |
           1925-1934  |   .2488677   .1009464     2.47   0.014     .0510164    .4467189
           1935-1944  |   .0457853   .0972702     0.47   0.638    -.1448609    .2364314
                      |
                _cons |  -.2376548   .1529604    -1.55   0.120    -.5374517    .0621421
    -----------------------------------------------------------------------------------
    
    ------------------------------------------------------------------------------
      Random-effects parameters  |   Estimate   Std. err.     [95% conf. interval]
    -----------------------------+------------------------------------------------
       id: Unstructured          |
                   var(splines1) |   .0002124   .0000443      .0001411    .0003197
                      var(_cons) |   .2236183   .0155616      .1951067    .2562965
             cov(splines1,_cons) |   .0035948   .0005764       .002465    .0047246
    -----------------------------+------------------------------------------------
                   var(Residual) |    .473713    .013623       .447751    .5011804
    ------------------------------------------------------------------------------
    LR test vs. linear model: chi2(3) = 526.98                Prob > chi2 = 0.0000
    
    Note: LR test is conservative and provided only for reference.

    Code:
    mixed Y i.cohort##c.(splines*) || id:splines*, cov(unstr)
    Performing EM optimization ...
    
    Performing gradient-based optimization: 
    Iteration 0:   log likelihood = -5174.6216  (not concave)
    Iteration 1:   log likelihood = -5169.0887  (not concave)
    Iteration 2:   log likelihood = -5163.8616  (not concave)
    Iteration 3:   log likelihood = -5162.8857  (not concave)
    Iteration 4:   log likelihood = -5162.4266  (not concave)
    Iteration 5:   log likelihood =  -5161.998  (not concave)
    Iteration 6:   log likelihood =  -5161.727  
    Iteration 7:   log likelihood = -5161.4759  
    Iteration 8:   log likelihood = -5160.8972  
    Iteration 9:   log likelihood = -5160.7124  
    Iteration 10:  log likelihood = -5160.7121  
    
    Computing standard errors ...
    
    Mixed-effects ML regression                     Number of obs     =      4,325
    Group variable: id                              Number of groups  =      1,026
                                                    Obs per group:
                                                                  min =          3
                                                                  avg =        4.2
                                                                  max =          6
                                                    Wald chi2(11)     =     395.75
    Log likelihood = -5160.7121                     Prob > chi2       =     0.0000
    
    -----------------------------------------------------------------------------------
              Y       | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
    ------------------+----------------------------------------------------------------
               cohort |
           1925-1934  |   .5383008   .1859211     2.90   0.004     .1739021    .9026994
           1935-1944  |   .5485608   .1789823     3.06   0.002      .197762    .8993597
                      |
             splines1 |  -.0148098   .0091121    -1.63   0.104    -.0326693    .0030496
             splines2 |   .0689632   .0244999     2.81   0.005     .0209443     .116982
             splines3 |  -.3154164   .0795977    -3.96   0.000    -.4714251   -.1594078
                      |
    cohort#c.splines1 |
           1925-1934  |   .0246524   .0110039     2.24   0.025     .0030851    .0462198
           1935-1944  |   .0207464   .0106143     1.95   0.051    -.0000573      .04155
                      |
    cohort#c.splines2 |
           1925-1934  |  -.0782772   .0305633    -2.56   0.010    -.1381801   -.0183742
           1935-1944  |  -.0493529    .029266    -1.69   0.092    -.1067131    .0080074
                      |
    cohort#c.splines3 |
           1925-1934  |   .2488217   .1009145     2.47   0.014      .051033    .4466104
           1935-1944  |    .049997   .0973718     0.51   0.608    -.1408482    .2408422
                      |
                _cons |   -.238303   .1496277    -1.59   0.111    -.5315678    .0549618
    -----------------------------------------------------------------------------------
    
    ------------------------------------------------------------------------------
      Random-effects parameters  |   Estimate   Std. err.     [95% conf. interval]
    -----------------------------+------------------------------------------------
       id: Unstructured          |
                   var(splines1) |    .000206          .             .           .
                   var(splines2) |   .0054899          .             .           .
                   var(splines3) |   .0730532          .             .           .
                      var(_cons) |   .3655216          .             .           .
          cov(splines1,splines2) |   -.000953          .             .           .
          cov(splines1,splines3) |   .0030844          .             .           .
             cov(splines1,_cons) |   .0075392          .             .           .
          cov(splines2,splines3) |  -.0189982          .             .           .
             cov(splines2,_cons) |  -.0251046          .             .           .
             cov(splines3,_cons) |   .0727699          .             .           .
    -----------------------------+------------------------------------------------
                   var(Residual) |   .4422374          .             .           .
    ------------------------------------------------------------------------------
    LR test vs. linear model: chi2(10) = 556.27               Prob > chi2 = 0.0000
    
    Note: LR test is conservative and provided only for reference.
    
    
    
    mixed Y i.cohort##c.(splines*) || id:splines*
    Performing EM optimization ...
    
    Performing gradient-based optimization: 
    Iteration 0:   log likelihood = -5197.6121  
    Iteration 1:   log likelihood = -5172.1335  (not concave)
    Iteration 2:   log likelihood = -5169.0236  
    Iteration 3:   log likelihood = -5168.2809  
    Iteration 4:   log likelihood = -5168.1086  
    Iteration 5:   log likelihood = -5168.1075  
    Iteration 6:   log likelihood = -5168.0711  
    Iteration 7:   log likelihood = -5168.0711  
    
    Computing standard errors ...
    
    Mixed-effects ML regression                     Number of obs     =      4,325
    Group variable: id                              Number of groups  =      1,026
                                                    Obs per group:
                                                                  min =          3
                                                                  avg =        4.2
                                                                  max =          6
                                                    Wald chi2(11)     =     416.41
    Log likelihood = -5168.0711                     Prob > chi2       =     0.0000
    
    -----------------------------------------------------------------------------------
              Y       | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
    ------------------+----------------------------------------------------------------
               cohort |
           1925-1934  |   .5478782   .1871955     2.93   0.003     .1809817    .9147748
           1935-1944  |   .5553173   .1800921     3.08   0.002     .2023433    .9082913
                      |
             splines1 |   -.015552     .00931    -1.67   0.095    -.0337993    .0026953
             splines2 |   .0713006   .0247092     2.89   0.004     .0228716    .1197297
             splines3 |   -.323562   .0797001    -4.06   0.000    -.4797712   -.1673527
                      |
    cohort#c.splines1 |
           1925-1934  |   .0252969   .0112453     2.25   0.024     .0032565    .0473373
           1935-1944  |   .0212774   .0108361     1.96   0.050      .000039    .0425158
                      |
    cohort#c.splines2 |
           1925-1934  |  -.0802425   .0307192    -2.61   0.009    -.1404511    -.020034
           1935-1944  |  -.0497885   .0293897    -1.69   0.090    -.1073912    .0078141
                      |
    cohort#c.splines3 |
           1925-1934  |   .2561349   .1005975     2.55   0.011     .0589675    .4533023
           1935-1944  |   .0479489   .0970066     0.49   0.621    -.1421806    .2380785
                      |
                _cons |   -.250412   .1511236    -1.66   0.098    -.5466089    .0457848
    -----------------------------------------------------------------------------------
    
    ------------------------------------------------------------------------------
      Random-effects parameters  |   Estimate   Std. err.     [95% conf. interval]
    -----------------------------+------------------------------------------------
       id: Independent           |
                   var(splines1) |   1.08e-16   6.85e-14             0           .
                   var(splines2) |   .0002999   .0000431      .0002264    .0003974
                   var(splines3) |   6.92e-12   3.59e-09             0           .
                      var(_cons) |   .1828179   .0147903       .156011     .214231
    -----------------------------+------------------------------------------------
                   var(Residual) |   .4642764   .0126269      .4401762    .4896962
    ------------------------------------------------------------------------------
    LR test vs. linear model: chi2(4) = 541.55                Prob > chi2 = 0.0000
    
    Note: LR test is conservative and provided only for reference.
    
    
    * Example generated by -dataex-. For more info, type help dataex
    clear
    input double id float(Y cohort spline4_1 spline4_2 spline4_3) double age
    100009  -.3298419 0 -20 .004759072          0 45
    100009   1.217866 0  -7  2.0077336          0 58
    100009  -.3298419 0   3   9.295062    .594884 68
    100009  -.3298419 0  14   26.79431    4.90006 79
    100026   1.217866 2 -25          0          0 40
    100026  -.3298419 2 -15   .2040452          0 50
    100026  -.3298419 2  -6   2.436645 .000594884 59
    100026   1.217866 2   4   10.45568   .7917906 69
    100026  -.3298419 2   8  16.046858  1.9982153 73
    100026 -1.8775498 2  16    30.7663   6.048186 81
    100030  -.3298419 1 -14   .3045806          0 51
    100030  -.3298419 1  -4  3.4693635 .016061869 61
    100030 -1.8775498 1   5  11.709102  1.0279596 70
    100030  -.3298419 1  15   28.76493   5.466984 80
    100030 -1.8775498 1  19  36.878048   7.841761 84
    100057   .4271728 2 -19 .016061869          0 46
    100057   1.217866 2  -9    1.30696          0 56
    100057 -1.0868567 2  10  19.373083    2.84652 75
    100057  -.3298419 2  14   26.79431    4.90006 79
    100059   .4608511 0 -15   .2040452          0 50
    100059  -.3298419 0  -2   4.759072   .0743605 63
    100059  -.3298419 0   8  16.046858  1.9982153 73
    100063  -.3298419 1 -17   .0743605          0 48
    100063   1.217866 1  -7  2.0077336          0 58
    100063  -.3298419 1   2   8.223677   .4336704 67
    100063 -1.8775498 1  13  24.862123  4.3509817 78
    100063 -1.8775498 1  16    30.7663   6.048186 81
    100073  -.3298419 2 -23          0          0 42
    100073  -.3298419 2   6  13.058893    1.30696 71
    100073   1.217866 2  10  19.373083    2.84652 75
    100073  -.3298419 2  18   34.83055   7.239143 83
    100079  -.3298419 2 -24          0          0 41
    100079  -.3298419 2 -14   .3045806          0 51
    100079   1.217866 2  -5   2.922665 .004759072 60
    100079   1.217866 2   5  11.709102  1.0279596 70
    100079  -.3298419 2   9  17.671532   2.404521 74
    100079   1.217866 2  16    30.7663   6.048186 81
    100084  -.3298419 0 -16  .12849495          0 49
    100084   1.217866 0  -3  4.0803094  .03807257 62
    100084  -.3298419 0   7   14.50675   1.631172 72
    100084   .4608511 0  18   34.83055   7.239143 83
    100086  -.3298419 0 -12    .594884          0 53
    100086  -.3298419 0   1   7.237954   .3045806 66
    100086  -.3298419 0  11  21.143826  3.3206425 76
    100105 -1.8775498 2 -13   .4336704          0 52
    100105 -1.0868567 2  -4  3.4693635 .016061869 61
    100105 -1.8775498 2   6  13.058893    1.30696 71
    100105 -1.0868567 2  10  19.373083    2.84652 75
    100105 -1.0868567 2  18   34.83055   7.239143 83
    100113  -.3298419 0 -21 .000594884          0 44
    100113  -.3298419 0  -8  1.6323617          0 57
    100113   1.217866 0   2   8.223677   .4336704 67
    100114  -.3298419 1 -18  .03807257          0 47
    100114  -.3298419 1  -8  1.6323617          0 57
    100114   .4271728 1   1   7.237954   .3045806 66
    100114   1.217866 1  12  22.976067  3.8233194 77
    100114  -.3298419 1  15   28.76493   5.466984 80
    100116  -.3298419 1 -16  .12849495          0 49
    100116  -.3298419 1  -6   2.436645 .000594884 59
    100116  -.3298419 1   3   9.295062    .594884 68
    100139   .4608511 1 -25          0          0 40
    100139   1.217866 1  -2   4.759072   .0743605 63
    100139   1.217866 1   7   14.50675   1.631172 72
    100139   1.217866 1  17  32.790737   6.640095 82
    100139   1.217866 1  21   40.97561   9.048185 86
    100142  -.3298419 0 -19 .016061869          0 46
    100142  -.3298419 0  -6   2.436645 .000594884 59
    100142  -.3298419 0   4   10.45568   .7917906 69
    100142  -.3298419 0  15   28.76493   5.466984 80
    100145   .4608511 2 -25          0          0 40
    100145  -.3298419 2 -15   .2040452          0 50
    100145   1.217866 2  -6   2.436645 .000594884 59
    100145   .4608511 2   4   10.45568   .7917906 69
    100145   .4608511 2  16    30.7663   6.048186 81
    100166 -1.8775498 1 -22          0          0 43
    100166   1.217866 1  -9    1.30696          0 56
    100166  -.3298419 1   1   7.237954   .3045806 66
    100177   .4271728 0 -20 .004759072          0 45
    100177   1.217866 0   3   9.295062    .594884 68
    100177   1.217866 0  14   26.79431    4.90006 79
    100178   1.217866 1 -25          0          0 40
    100178   1.217866 1 -12    .594884          0 53
    100178   1.217866 1  -2   4.759072   .0743605 63
    100193  -.3298419 0 -20 .004759072          0 45
    100193  -.3298419 0  -7  2.0077336          0 58
    100193   .4271728 0   3   9.295062    .594884 68
    100193 -1.8775498 0  14   26.79431    4.90006 79
    100196  -.3298419 2 -19 .016061869          0 46
    100196   1.217866 2  -9    1.30696          0 56
    100196   1.217866 2   0   6.334325   .2040452 65
    100196   1.217866 2  10  19.373083    2.84652 75
    100196   1.217866 2  14   26.79431    4.90006 79
    100196  -.3298419 2  21   40.97561   9.048185 86
    100206 -1.8775498 2 -11   .7917906          0 54
    100206 -1.8775498 2   8  16.046858  1.9982153 73
    100206 -1.8775498 2  12  22.976067  3.8233194 77
    100214   1.217866 1 -17   .0743605          0 48
    100214   1.217866 1  -7  2.0077336          0 58
    100214  -.3298419 1   2   8.223677   .4336704 67
    100214   .4608511 1  12  22.976067  3.8233194 77
    end
    label values cohort cohort
    label def cohort 0 "1915-1924", modify
    label def cohort 1 "1925-1934", modify
    label def cohort 2 "1935-1944", modify
Working...
X