Paolo:
the two codes are different:
That sais, I do not get why Stata complains about your first code.
the two codes are different:
Code:
. use https://www.stata-press.com/data/r17/union. . use https://www.stata-press.com/data/r17/union (NLS Women 14-24 in 1968) . xtlogit union age grade not_smsa i.south##c.year, fe vce(bootstrap, reps(200) seed(12345) dots(1)) (running xtlogit on estimation sample) Bootstrap replications (200) ----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5 .................................................. 50 .................................................. 100 .................................................. 150 .................................................. 200 Conditional fixed-effects logistic regression Number of obs = 12,035 Replications = 200 Group variable: idcode Number of groups = 1,690 Obs per group: min = 2 avg = 7.1 max = 12 Wald chi2(6) = 38.72 Log likelihood = -4510.888 Prob > chi2 = 0.0000 (Replications based on 1,690 clusters in idcode) ------------------------------------------------------------------------------ | Observed Bootstrap Normal-based union | coefficient std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- age | .0710973 .0945357 0.75 0.452 -.1141894 .2563839 grade | .0816111 .05568 1.47 0.143 -.0275198 .1907419 not_smsa | .0224809 .1536343 0.15 0.884 -.2786368 .3235986 1.south | -2.856488 .879619 -3.25 0.001 -4.580509 -1.132466 year | -.0636853 .0952784 -0.67 0.504 -.2504275 .1230568 | south#c.year | 1 | .0264136 .0109133 2.42 0.016 .0050239 .0478032 ------------------------------------------------------------------------------ . bootstrap, reps(200) seed(12345): xtlogit union age grade not_smsa i.south##c.year, fe (running xtlogit on estimation sample) Bootstrap replications (200) ----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5 .................................................. 50 .................................................. 100 .................................................. 150 .................................................. 200 Conditional fixed-effects logistic regression Number of obs = 12,035 Replications = 200 Group variable: idcode Number of groups = 1,690 Obs per group: min = 2 avg = 7.1 max = 12 Wald chi2(6) = 44.14 Log likelihood = -4510.888 Prob > chi2 = 0.0000 (Replications based on clustering on idcode) ------------------------------------------------------------------------------ | Observed Bootstrap Normal-based union | coefficient std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- age | .0710973 .1149636 0.62 0.536 -.1542272 .2964217 grade | .0816111 .057185 1.43 0.154 -.0304694 .1936915 not_smsa | .0224809 .1352539 0.17 0.868 -.2426119 .2875738 1.south | -2.856488 .8285044 -3.45 0.001 -4.480326 -1.232649 year | -.0636853 .1161776 -0.55 0.584 -.2913893 .1640186 | south#c.year | 1 | .0264136 .0101533 2.60 0.009 .0065135 .0463136 ------------------------------------------------------------------------------ .
Comment