I usually find the answer to these questions in the PDF documentation, but here I was unable to.
What is the mathematical formula that Stata uses (using default options) to estimate a confidence interval for a total effect in a meta analysis?
Example:
How did Stata use studies 1 to 10 CIs to get at [0.857,1.418]?
What is the mathematical formula that Stata uses (using default options) to estimate a confidence interval for a total effect in a meta analysis?
Example:
Code:
. webuse metaset (Generic effect sizes; fictional data) . meta set es cil ciu Meta-analysis setting information Study information No. of studies: 10 Study label: Generic Study size: N/A Effect size Type: <generic> Label: Effect size Variable: es Precision Std. err.: _meta_se CI: [_meta_cil, _meta_ciu] CI level: 95%, controlled by level() User CI: [cil, ciu] User CI level: 95%, controlled by civarlevel() Model and method Model: Random effects Method: REML . meta summ Effect-size label: Effect size Effect size: es Std. err.: _meta_se Meta-analysis summary Number of studies = 10 Random-effects model Heterogeneity: Method: REML tau2 = 0.0157 I2 (%) = 5.30 H2 = 1.06 -------------------------------------------------------------------- Study | Effect size [95% conf. interval] % weight ------------------+------------------------------------------------- Study 1 | 1.480 -0.352 3.311 2.30 Study 2 | 0.999 -0.933 2.931 2.07 Study 3 | 1.272 0.427 2.117 10.15 Study 4 | 1.001 0.750 1.252 63.77 Study 5 | 1.179 -0.527 2.884 2.65 Study 6 | 1.939 0.427 3.452 3.35 Study 7 | 2.377 1.005 3.750 4.05 Study 8 | 0.694 -0.569 1.956 4.75 Study 9 | 1.099 -0.147 2.345 4.88 Study 10 | 1.805 -0.151 3.761 2.02 ------------------+------------------------------------------------- theta | 1.138 0.857 1.418 -------------------------------------------------------------------- Test of theta = 0: z = 7.95 Prob > |z| = 0.0000 Test of homogeneity: Q = chi2(9) = 6.34 Prob > Q = 0.7054