Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Issue with egen function code

    HI,

    I currently have a code, where I am regressing a group of search terms on the variable 'rmrf', where I am doing a 6 month rolling regression window.

    Code:
    foreach v of var ldiffcost_w_res-ldiffexpense_w_res {
      2.     rangestat (reg) `v' rmrf, interval(ddate -183 0)
      3.     rename reg_nobs nobs_`v'_1
      4.     rename b_rmrf coef_`v'_1
      5.     drop reg_* b_* se_*
      6. }
    
    . foreach v of varlist ldiffcost_w_res-ldiffexpense_w_res {
      2.     generate n_cf_`v'_1 = coef_`v'_1 if coef_`v'_1 < 0
      3. }
    
     egen UKIS = rowmean(n_cf_*_1)
    (19 missing values generated)
    
    . replace UKIS = . if date < td(1jul2004)
    (181 real changes made, 181 to missing)
    I want to regress the words and highlight those that have a negative coefficient. Then I want to use the original observations of these words and average their observations on day t. Currently, my code averages the values of the negative coefficients rather than the original observations. I am unsure on how to average the original observations using only the ones that have a negative coefficient.

    Here is a sample of the dataset that I have:
    Code:
    input int date float(ldiffcost_w_res ldiffrate_w_res ldiffexpense_w_res) double rmrf float(n_cf_ldiffcost_w_res_1 n_cf_ldiffexpense_w_res_1 UKIS)
    16437   -.05834968   -.2081246      .2320308          .           .          .          .
    16438    .21403165  -.38767675    -.04747018          .    -2.86213          . -10.175105
    16439   -.29560152  -.12090172     -.2394834          .           .          . -10.388507
    16440 -.0045288913    .3767251    -.03955405  .00650545           .          .  -4.554414
    16441     .3070476  -.09433474   -.017652145 -.00828937           .          .  -4.424999
    16442   -.27640402   .08121838     1.4430603  .00312299           .          . -4.7002945
    16443   -.09845573  -.12236673    -1.4207736  .00592295           .          .  -5.100893
    16444    -.2283036   -.2081246      .2320308          .           .          .  -4.990869
    16445    .21403165    .2511179    -.04747018          .           .          .  -4.784919
    16446      .162349  -.03150256     -.2394834 -.00252512           .          .  -5.314806
    16447   -.25534093 -.026588017    -.03955405 -.00400511           .          .  -4.375304
    16448    .13548072   .08722775   -.017652145 -.00566278           .          .  -4.430126
    16449    .23331444 -.005464857 -.00057517155  .00366635           .          .  -4.926298
    16450    -.2316892  -.14046246     1.4664973  .00400246           .          .  -3.795078
    16451    .05862203   .07656781    -1.2116047          .           .          .  -2.679231
    16452     .1452026   .18817613    -.04747018          .           .          .  -2.693627
    16453   -.14245136  -.07169075      1.204152  .00490704           .          . -2.6149395
    16454    -.1221075   -.3129295    -1.4831895 -.00432636           .          . -2.3353891
    16455    .06276067    .1920067   -.017652145 -.00006776           .          .  -2.457366
    16456   -.27640402  -.20512307     1.4430603  -.0030091           .          .  -2.438887
    16457    .05523642    .1639747    -1.4207736  .00027096           .          .  -2.171133
    16458    .05862203   .19353953      .2320308          .           .          . -1.6369637
    16459    -.0907687  -.38767675     1.3961653          . -.018644754          . -1.8115312
    16460   -.08846305    .1957282    -1.6831188  .00099638  -.06898821          . -1.1924068
    16461 -.0045288913 -.026588017     1.4040815  .00564778  -.13491403          . -1.1016238
    16462  .0022472555 -.007651503    -1.4612876   .0009166 -.024055757          .  -.9663974
    16463   .010521606 -.005464857 -.00057517155  .00091163           .          .  -.8804716
    16464    .05523642 -.035683494    .022861846 -.00358844           .          .  -.8549157
    16465    .05862203   .28841877     1.6756662          .           .          .  -.7230792
    16466    -.0907687  -.23323277      .6433755          .           .          .  -.6504785
    16467   -.08846305  .033088222    -1.6831188  .00441636 -.016384184          .  -.6539179
    16468    .00642463  -.19763285    -1.4693347   .0103065   -.1269489          .  -.6771828
    16469   .013200777    .0977454  -.0037974084   .0024127 -.033351608          .  -.8179197
    16470   .021475127  -.08982645    .013279564 -.00123166           .          .  -.8755412
    16471   .066189945  -.15203726     .03671658  .00608358           .          . -1.0695547
    16472    .06957555    .3210289      1.689521          .           .          .   -.884703
    16473   -.07981519   .08172207     -1.477251          .           .          . -1.0992079
    16474   -.07750952   -.2427356     1.2180067  .00685682  -.12091915          .  -.8878829
    16475    .00642463  -.12084933    -1.4693347   .0032801   -.0854643          .  -.9456161
    16476   .013200777   .10764512  -.0037974084  .00001601  -.07801989          . -1.0210369
    16477   .021475127  .005052797    .013279564  .00137872  -.10539275          . -1.1067222
    16478   .066189945  .069713406     .03671658  .00766162  -.10617046          . -1.0183533
    16479    .06957555   .09927821      .2458855          .           .          .  -.9794009
    16480   -.07981519   -.0230569   -.033615448          .           .          .   -.999283
    16481   -.07750952   .04360588    -.22562867 -.00053982           .          .  -.9853353
    16482    .00642463   -.1027536   -.025699316  .00245113           .          .  -.9136671
    16483   .013200777  -.19679207  -.0037974084 -.00114167           .          .  -.8710204
    16484   .021475127     .204711      1.456915  .00052017           .          .    -.98585
    16485   .066189945   -.1299448     -1.406919 -.00031131           .          . -1.1184077
    16486    .06957555    .2040572      1.689521          .           .          . -1.1990377
    16487   -.07981519   .08172207     -1.477251          .           .          .  -.9554671
    16488   -.07750952   -.2427356    -.22562867 -.00076999           .          . -1.1287442
    16489    .00642463    .1654921     1.4179362 -.00564337           .          .  -.8751735
    16490   .013200777  -.17869633     -1.447433 -.00701145           .          . -1.0334953
    16491   .021475127  -.09972617    .013279564 -.00262292           .          .  -.9550318
    16492   .066189945  .069713406     .03671658  .00685458           .          .  -.7823295
    16493    .06957555    .6440908      1.689521          .           .          .  -.7421312
    16494   -.07981519    -.424721     -1.477251          .           .          .  -.7110152
    16495   -.07750952  -.04307737    -.22562867 -.00625874           .          .  -.8545512
    16496  .0019901923   .07031601   -.017967774   .0056641           . -.04460417  -.8621873
    16497   .008766339   -.1789932   .0039341333 -.00099812           .          .   -.686049
    16498   .017040689  .004755928    .021011105  .00366911           .          .  -.7258016
    16499     .0617555     .250979     .04444812  .00430134           .          .  -.8277358
    16500    .06514111  -.08258115     .25361705          .           .          .  -.7602806
    16501   -.08424962    -.272677     1.4177516          .           .          .   -.726023
    16502   -.08194396   .22100148    -1.6615326 -.00188178           .          .  -.7033923
    16503  .0019901923 -.016367232     1.4256676  -.0034319           .          .  -.6617253
    16504   .008766339   -.1789932    -1.4397013 -.00116718           .          .  -.6632981
    16505   .017040689    .1863184    .021011105 -.00627028           .          .  -.6266504
    16506     .0617555   -.3322476     .04444812  .00383085           .          .  -.5587101
    16507    .06514111     .425511     .25361705          .           .          .   -.447248
    16508   -.08424962    -.377456    -.02588391          .           .          . -.50149727
    I want my index to be formed by averaging those ldiffvar observations only in they have a negative coefficient when regressed with 'rmrf' in a 6 month window. Then this takes a value in the index in the following 6 months to get rid of the look ahead bias for the search terms, but at the moment the index is formed by taking the average of the negative coefficients rather than the original observations, which I am struggling to implement.
Working...
X