Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • medeff interpretation

    Hi Statalisters -

    I am hoping that someone can help me understand a strange finding I am receiving while using the medeff procedure. I am seeking to identify whether the relationship between history of adverse reproductive health outcome (binary) and contraceptive method satisfaction (binary) is mediated by level of trust in provider (continuous). For the proportion total effect mediated, I was surprised to see that the 95% CI included values above/below 1.

    My code is as follows:

    medeff ///
    (regress provtrust ipv age hisp black asianoth insmedicaid insprivate parous arm) ///
    (logit bcrecomd_6mo_v1 ipv provtrust age hisp black asianoth insmedicaid insprivate parous arm decidetier2 decidetier3) ///
    , treat(ipv) mediate(provtrust) sims(1000) vce(cluster blindsiteid)
    }

    And the output is as follows:

    ipv
    Using 0 and 1 as treatment values

    Linear regression Number of obs = 1,062
    F(9, 39) = 3.14
    Prob > F = 0.0061
    R-squared = 0.0209
    Root MSE = .52319

    (Std. err. adjusted for 40 clusters in blindsiteid)
    ------------------------------------------------------------------------------
    | Robust
    provtrust | Coefficient std. err. t P>|t| [95% conf. interval]
    -------------+----------------------------------------------------------------
    ipv | -.0807202 .0356985 -2.26 0.029 -.1529272 -.0085132
    age | .004571 .0080987 0.56 0.576 -.0118102 .0209521
    hisp | -.068913 .033135 -2.08 0.044 -.1359349 -.0018911
    black | -.1127631 .0677217 -1.67 0.104 -.2497432 .0242169
    asianoth | -.0882541 .0584832 -1.51 0.139 -.2065476 .0300393
    insmedicaid | -.0406858 .0477949 -0.85 0.400 -.1373602 .0559886
    insprivate | -.0434941 .035422 -1.23 0.227 -.1151418 .0281536
    parous | -.0859105 .0475882 -1.81 0.079 -.1821668 .0103458
    arm | .0125716 .0398476 0.32 0.754 -.0680277 .093171
    _cons | 3.200203 .1807392 17.71 0.000 2.834623 3.565782
    ------------------------------------------------------------------------------

    Iteration 0: log pseudolikelihood = -623.61477
    Iteration 1: log pseudolikelihood = -599.31587
    Iteration 2: log pseudolikelihood = -598.98421
    Iteration 3: log pseudolikelihood = -598.98401

    Logistic regression Number of obs = 1062
    Wald chi2(12) = 42.57
    Prob > chi2 = 0.0000
    Log pseudolikelihood = -598.98401 Pseudo R2 = 0.0395

    (Std. err. adjusted for 40 clusters in blindsiteid)
    ------------------------------------------------------------------------------
    | Robust
    bcrecomd_6~1 | Coefficient std. err. z P>|z| [95% conf. interval]
    -------------+----------------------------------------------------------------
    ipv | .0994067 .1666788 0.60 0.551 -.2272778 .4260911
    provtrust | .5885296 .1325096 4.44 0.000 .3288156 .8482437
    age | -.0059536 .0345329 -0.17 0.863 -.0736369 .0617297
    hisp | .8431579 .182438 4.62 0.000 .485586 1.20073
    black | .4811103 .2338404 2.06 0.040 .0227915 .9394292
    asianoth | .3291927 .2872338 1.15 0.252 -.2337751 .8921606
    insmedicaid | .6025237 .2304948 2.61 0.009 .1507621 1.054285
    insprivate | .1713909 .1552445 1.10 0.270 -.1328827 .4756646
    parous | -.5831224 .2186995 -2.67 0.008 -1.011766 -.1544792
    arm | -.0735658 .1369856 -0.54 0.591 -.3420526 .1949211
    decidetier2 | .0291987 .0994385 0.29 0.769 -.1656972 .2240947
    decidetier3 | -.0472242 .0588196 -0.80 0.422 -.1625084 .06806
    _cons | -1.108129 .9017834 -1.23 0.219 -2.875592 .6593345
    ------------------------------------------------------------------------------
    (62 missing values generated)
    (62 missing values generated)
    (62 missing values generated)
    ------------------------------------------------------------------------------------
    Effect | Mean [95% Conf. Interval]
    -------------------------------+----------------------------------------------------
    ACME1 | -.0086732 -.0181068 -.0012532
    ACME0 | -.0090556 -.019245 -.0013109
    Direct Effect 1 | .0193307 -.0398151 .0810223
    Direct Effect 0 | .0189483 -.0390699 .0790609
    Total Effect | .0102751 -.0498005 .071245
    % of Total via ACME1 | -.2048171 -4.892001 3.403679
    % of Total via ACME0 | -.213847 -5.10768 3.55374

    Average Mediation | -.0088644 -.0188779 -.001286
    Average Direct Effect | .0191395 -.0394425 .0800535
    % of Tot Eff mediated | -.209332 -4.99984 3.478709


    I have not used this procedure before, but based on what I've seen, the % of tot eff mediated is interpreted as a %, so I don't understand why would be negative and why would the 95% CI be so large (should it not max at 1?).

    Thanks so much for any feedback you can provide.

    Best,
    Alison
Working...
X