set obs isn't relevant to the case where your data are already in memory. It's only needed because I create a fake dataset.
-
Login or Register
- Log in with
*Fixed effects: Heterogeneity across entities (stripplot) clear set seed 2803 gen performance = exp(rnormal(-2, 1)) gen type_industry = ceil(_n/ 100) label def type_industry 1 `" "Basic" "Materials" "' /// 2 `" "Communi-" "cations" "' 3 `" "Consumer" "Cyclical" "' 4 `" "Consumer" "Non-Cyclical" "' /// 5 "Energy" 6 "Financial" 7 "Industrial" 8 "Technology" 9 "Utilities" , modify label val type_industry type_industry * get a gmean() function (don't remove the *) * ssc inst egenmore * sort on geometric mean (don't remove the *) * ssc inst myaxis myaxis xaxis=type_industry, sort(gmean performance) * ssc inst stripplot stripplot performance, over(xaxis) centre vertical cumul cumprob refline scheme(s1color) xla(, noticks labsize(small)) xsize(7) xtitle("") ysc(log) yla(5 2 1 0.5 0.2 0.1 0.05 0.02, ang(h)) reflevel(gmean) mc(blue)
set obs 900 set seed 2803
use"File4.dta", clear *means and standard deviations of intangible assets by industry preserve collapse (mean) mean_intangible_assets_industry=intangible_assets (sd) sd_intangible_assets_industry=intangible_assets, by (industry) asdoc list, replace restore *means and standard deviations of intangible assets by year preserve collapse (mean) mean_intangible_assets_year=intangible_assets (sd) sd_intangible_assets_year=intangible_assets, by (year) asdoc list, replace restore *descriptive statistics for control variables (average, mean, sd) asdoc tabstat enterprise_value_added market_capitalization leverage stock_growth dividend_payout_ratio stock_volatility, stat(mean p50 sd), replace *correlation for control variables corr enterprise_value_added market_capitalization leverage stock_growth dividend_payout_ratio stock_volatility *setting panel data xtset i year *exploring panel data xtline ln_firm_performance xtline ln_firm_performance, overlay *OLS regression regress firm_performance intangible_assets scatter firm_performance intangible_assets, ms(none) ylabel(minmax) xlabel(minmax) mlabel(industry_l) mlabpos(0) || lfit firm_performance intangible_assets, clstyle(p2) *Fixed effects: Heterogeneity across entities (stripplot) clear set obs 900 set seed 2803 gen performance = exp(rnormal(-2, 1)) gen type_industry = ceil(_n/ 100) label def type_industry 1 `" "Basic" "Materials" "' /// 2 `" "Communi-" "cations" "' 3 `" "Consumer" "Cyclical" "' 4 `" "Consumer" "Non-Cyclical" "' /// 5 "Energy" 6 "Financial" 7 "Industrial" 8 "Technology" 9 "Utilities" , modify label val type_industry type_industry * get a gmean() function (don't remove the *) * ssc inst egenmore * sort on geometric mean (don't remove the *) * ssc inst myaxis myaxis xaxis=type_industry, sort(gmean performance) * ssc inst stripplot stripplot performance, over(xaxis) centre vertical cumul cumprob refline scheme(s1color) xla(, noticks labsize(small)) xsize(7) xtitle("") ysc(log) yla(5 2 1 0.5 0.2 0.1 0.05 0.02, ang(h)) reflevel(gmean) mc(blue)
Comment