Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • #16
    Kate:
    not quite.
    By implementing Wouter's helpful advice, you will actually obtain an interaction between a continuous and categorical variable that works as you surmised, but instead of producing an indicator, gives back different coefficients (ie, the so called main conditional effects along with the interaction in proper sense).
    That said, one of the most helpful approach that I know (to which I return whenever it's a while I ran my last interaction) implies retrieving the fitted values from Stata and then challenging myself with (re)calculating the fitted values on the grounds of regression results, as you can see in the following toy-example:
    Code:
    use "https://www.stata-press.com/data/r16/nlswork.dta"
    
    . xtreg ln_wage c.age##i.nev_mar, fe
    
    Fixed-effects (within) regression               Number of obs     =     28,494
    Group variable: idcode                          Number of groups  =      4,710
    
    R-sq:                                           Obs per group:
         within  = 0.1088                                         min =          1
         between = 0.0889                                         avg =        6.0
         overall = 0.0797                                         max =         15
    
                                                    F(3,23781)        =     968.10
    corr(u_i, Xb)  = 0.0248                         Prob > F          =     0.0000
    
    -------------------------------------------------------------------------------
          ln_wage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    --------------+----------------------------------------------------------------
              age |   .0156629   .0004015    39.01   0.000     .0148759    .0164499
        1.nev_mar |  -.3109508   .0246842   -12.60   0.000    -.3593333   -.2625682
                  |
    nev_mar#c.age |
               1  |   .0114433   .0010241    11.17   0.000      .009436    .0134506
                  |
            _cons |   1.225069   .0124108    98.71   0.000     1.200743    1.249395
    --------------+----------------------------------------------------------------
          sigma_u |  .40596052
          sigma_e |  .30238524
              rho |  .64316049   (fraction of variance due to u_i)
    -------------------------------------------------------------------------------
    F test that all u_i=0: F(4709, 23781) = 8.85                 Prob > F = 0.0000
    
    . predict xb, fitted
    option fitted not allowed
    r(198);
    
    . predict fitted, xb
    (40 missing values generated)
    
    . list idcode ln_wage age nev_mar fitted in 1
    
         +---------------------------------------------+
         | idcode    ln_wage   age   nev_mar    fitted |
         |---------------------------------------------|
      1. |      1   1.451214    18         1   1.40203 |
         +---------------------------------------------+
    
    . di 1.225069 + (.0156629+.0114433)*18  -.3109508
    1.4020298
    
    . list idcode ln_wage age nev_mar fitted in 2
    
         +---------------------------------------------+
         | idcode   ln_wage   age   nev_mar     fitted |
         |---------------------------------------------|
      2. |      1   1.02862    19         0   1.522664 |
         +---------------------------------------------+
    
    . di 1.225069 + (.0156629)*19
    1.5226641
    
    .
    Kind regards,
    Carlo
    (Stata 19.0)

    Comment

    Working...
    X