If one does the first stage jointly, some peculiarities of the situation become apparent. The residuals in the two equations are equivalent:
Now if I want to replicate the IV results by the Control Function method, I get the same results, but one set of residuals gets dropped due to collinearity:
Code:
. webuse abdata, clear . mvreg L.n L2.n = DL.n DL2.n Equation Obs Parms RMSE "R-sq" F P -------------------------------------------------------------------------- L_n 611 3 1.329206 0.0178 5.497023 0.0043 L2_n 611 3 1.329206 0.0075 2.293505 0.1018 ------------------------------------------------------------------------------ | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- L_n | n | LD. | .7793204 .4007435 1.94 0.052 -.0076892 1.56633 L2D. | .9261032 .4324795 2.14 0.033 .0767682 1.775438 | _cons | 1.101659 .0575023 19.16 0.000 .9887318 1.214586 -------------+---------------------------------------------------------------- L2_n | n | LD. | -.2206796 .4007435 -0.55 0.582 -1.007689 .5663299 L2D. | .9261032 .4324795 2.14 0.033 .0767682 1.775438 | _cons | 1.101659 .0575023 19.16 0.000 .9887318 1.214586 ------------------------------------------------------------------------------ . matlist e(Sigma) | L. L2. | n n -------------+---------------------- L.n | 1.766787 L2.n | 1.766787 1.766787 . predict double Lnres, eq(L_n) resid (420 missing values generated) . predict double L2nres, eq(L2_n) resid (420 missing values generated) . summ Lnres L2nres Variable | Obs Mean Std. Dev. Min Max -------------+--------------------------------------------------------- Lnres | 611 2.77e-11 1.327025 -3.18583 3.577057 L2nres | 611 1.66e-11 1.327025 -3.18583 3.577057
Code:
. _regress n L.n L2.n (DL.n DL2.n) Instrumental variables (2SLS) regression Source | SS df MS Number of obs = 611 -------------+---------------------------------- F(2, 608) = 599.49 Model | 1086.3574 2 543.178702 Prob > F = 0.0000 Residual | 12.8860345 608 .021194136 R-squared = 0.9883 -------------+---------------------------------- Adj R-squared = 0.9882 Total | 1099.24344 610 1.80203842 Root MSE = .14558 ------------------------------------------------------------------------------ n | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- n | L1. | 1.219895 .0426201 28.62 0.000 1.136194 1.303595 L2. | -.1969064 .0659825 -2.98 0.003 -.3264876 -.0673251 | _cons | -.0821593 .0563611 -1.46 0.145 -.1928454 .0285268 ------------------------------------------------------------------------------ . reg n L.n L2.n Lnres L2nres note: L2nres omitted because of collinearity Source | SS df MS Number of obs = 611 -------------+---------------------------------- F(3, 607) = 18336.33 Model | 1087.24616 3 362.415386 Prob > F = 0.0000 Residual | 11.9972815 607 .019764879 R-squared = 0.9891 -------------+---------------------------------- Adj R-squared = 0.9890 Total | 1099.24344 610 1.80203842 Root MSE = .14059 ------------------------------------------------------------------------------ n | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- n | L1. | 1.219895 .041158 29.64 0.000 1.139066 1.300724 L2. | -.1969064 .0637188 -3.09 0.002 -.3220425 -.0717702 | Lnres | -.0287638 .0495784 -0.58 0.562 -.1261299 .0686022 L2nres | 0 (omitted) _cons | -.0821593 .0544276 -1.51 0.132 -.1890485 .0247298 ------------------------------------------------------------------------------
Comment