Hello, Gizem Levent
Thanks for your suggestion. I must say until now I had not heard about Churdle models. So, thanks.
So, initially, I was estimating my model using a ZINB:
As a complement, I compared the fit of several count models through the countfit command (it might help you as well).
Later on, I thought in ordering my y_var as I described in #1. Therefore, I estimated my model using an ordered probit but with known cutpoints values:
So those are the options that I have explored until far. But I will look at your suggestion.
Why do you think it could be more suitable than a ZINB in this case?
Thanks for your comments!
Thanks for your suggestion. I must say until now I had not heard about Churdle models. So, thanks.
So, initially, I was estimating my model using a ZINB:
Code:
zinb y_var i.crt, inflate(i.crt) vce(robust) nolog Zero-inflated negative binomial regression Number of obs = 206 Nonzero obs = 95 Zero obs = 111 Inflation model = logit Wald chi2(3) = 1.19 Log pseudolikelihood = -349.203 Prob > chi2 = 0.7564 ------------------------------------------------------------------------------ | Robust y_var | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- y_var | crt | 0 | 0 (base) 1 | .0556972 .1893739 0.29 0.769 -.3154687 .4268632 2 | .2217949 .2087133 1.06 0.288 -.1872756 .6308654 3 | .0521774 .1856313 0.28 0.779 -.3116533 .4160081 | _cons | 1.318401 .1295376 10.18 0.000 1.064512 1.572291 -------------+---------------------------------------------------------------- inflate | crt | 0 | 0 (base) 1 | .6167728 .4522847 1.36 0.173 -.2696889 1.503235 2 | .8977877 .4333456 2.07 0.038 .048446 1.747129 3 | .8024306 .4043015 1.98 0.047 .0100141 1.594847 | _cons | -.514691 .3056755 -1.68 0.092 -1.113804 .084422 -------------+---------------------------------------------------------------- /lnalpha | -1.683724 .3398513 -4.95 0.000 -2.34982 -1.017628 -------------+---------------------------------------------------------------- alpha | .1856812 .063104 .0953863 .3614513 ------------------------------------------------------------------------------
Later on, I thought in ordering my y_var as I described in #1. Therefore, I estimated my model using an ordered probit but with known cutpoints values:
Code:
capture program drop oprobit1 . program define oprobit1 1. qui { 2. args lnf xb sig 3. replace `lnf' = ln(normprob((0-`xb')/`sig')) if $ML_y1==3 4. replace `lnf' = ln(normprob((10-`xb')/`sig')-normprob((1-`xb')/`sig')) if $ML_y1==2 5. replace `lnf' = ln(1-normprob((11-`xb')/`sig')) if $ML_y1==1 6. } 7. end . ml model lf oprobit1 (OProbit: new_yvar = i.crt) (Sigma: ), /* > */ title(Ordered Probit with known thresholds) . ml search initial: log likelihood = -<inf> (could not be evaluated) feasible: log likelihood = -354.79959 rescale: log likelihood = -253.42192 rescale eq: log likelihood = -174.49937 . ml maximize, nolog Ordered Probit with known thresholds Number of obs = 206 Wald chi2(3) = 4.77 Log likelihood = -171.53029 Prob > chi2 = 0.1897 ------------------------------------------------------------------------------ new_yvar | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- OProbit | crt | 0 | 0 (base) 1 | -1.862053 1.330443 -1.40 0.162 -4.469673 .7455673 2 | -2.344412 1.293559 -1.81 0.070 -4.879741 .1909163 3 | -2.226667 1.182047 -1.88 0.060 -4.543437 .0901035 | _cons | 1.279063 .8464439 1.51 0.131 -.3799364 2.938063 -------------+---------------------------------------------------------------- Sigma | _cons | 5.463908 .5414179 10.09 0.000 4.402748 6.525068 ------------------------------------------------------------------------------
Why do you think it could be more suitable than a ZINB in this case?
Thanks for your comments!
Comment