-
Login or Register
- Log in with
N = 100000 /// initialise sparse matrix W = sparse(N,N) /// two elements are non zero W[1,1] = 0.5 W[1000,200] = 0.2 X = rnormal(N,1,0,1) WX = W * X
varname = generate(exp)
**currently this is what margins produces:
. webuse union, clear
. probit union age grade not_smsa south##c.year
. margins, predict(pr) predict(xb)
Predictive margins Number of obs = 26,200
Model VCE : OIM
1._predict : Pr(union), predict(pr)
2._predict : Linear prediction, predict(xb)
------------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_predict |
1 | .221831 .0025368 87.44 0.000 .2168589 .2268031
2 | -.7857457 .0088079 -89.21 0.000 -.803009 -.7684825
------------------------------------------------------------------------------
** but It would be useful if it would produce this instead:
. margins, predict(pr) predict(xb)
Predictive margins Number of obs = 26,200
Model VCE : OIM
1._predict : Pr(union), predict(pr)
2._predict : Linear prediction, predict(xb)
------------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
pr | .221831 .0025368 87.44 0.000 .2168589 .2268031
xb | -.7857457 .0088079 -89.21 0.000 -.803009 -.7684825
------------------------------------------------------------------------------
Leave a comment: