Dear All,
I have quarterly data for 27 quarters for the 50 U.S. states. The dependent variable 'y' trends downwards across most states, for reasons exogenous to my model, but the downward trend differs by states. My data looks as follows:
The dependent variable trends as follows:


I want to estimate the effect of a policy change, which occurred at different calendar times in different states, on this dependent variable. However, I am concerned that the downward trend in the dependent variable will confound my policy impact. So I want to detrend the dependent variable for state specific trends. Would something like this work:
Then my difference in difference model on the detrended y yields a significant negative effect of the policy (post coef = -.0386):
Is this correct? I would greatly appreciate any help.
Sincerely,
Sumedha.
I have quarterly data for 27 quarters for the 50 U.S. states. The dependent variable 'y' trends downwards across most states, for reasons exogenous to my model, but the downward trend differs by states. My data looks as follows:
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input float(y x1 x2 x3 x4 x5 x6) byte(treated stateFIPS) float qtr 1.5559138 7.733333 0 7.7 0 27.7 0 1 2 1 1.6127143 7.566667 0 7.7 0 27.7 0 1 2 2 1.7659954 7.5 0 7.7 0 27.7 0 1 2 3 1.692289 7.466667 0 7.7 0 27.7 0 1 2 4 1.5172564 7.333333 0 7.7 0 27.7 0 1 2 5 1.6035068 7.166667 0 7.7 0 27.7 0 1 2 6 1.2022197 7.033333 0 7.7 0 27.7 0 1 2 7 1.4228586 7 0 7.7 0 27.7 0 1 2 8 1.2361064 7 0 7.7 0 27.7 0 1 2 9 1.2747653 7 0 7.7 0 27.7 0 1 2 10 1.4483876 7 0 7.7 0 27.7 0 1 2 11 1.568398 7 0 7.7 0 27.7 0 1 2 12 .9668907 7 0 7.7 0 27.7 0 1 2 13 1.449154 7 0 7.7 0 27.7 0 1 2 14 1.449154 6.866667 0 7.7 0 27.7 0 1 2 15 1.480541 6.6 0 7.7 0 27.7 0 1 2 16 1.595735 6.5 0 7.7 0 27.7 0 1 2 17 1.5391836 6.5 0 7.7 0 27.7 0 1 2 18 1.0161722 6.5 0 7.7 0 27.7 0 1 2 19 1.4154757 6.633333 0 7.7 0 27.7 0 1 2 20 1.6449387 6.766667 0 7.7 0 27.7 0 1 2 21 1.231831 6.866667 0 7.7 0 27.7 0 1 2 22 1.5349833 7 0 7.7 0 27.7 0 1 2 23 1.3075814 7 0 7.7 0 27.7 0 1 2 24 1.507301 7.033333 0 7.7 0 27.7 0 1 2 25 1.646811 7.133333 0 7.7 0 27.7 0 1 2 26 1.0142392 7.2 0 7.7 0 27.7 0 1 2 27 1.2666522 5.833333 0 15.2 0 31 0 0 1 23 1.6315258 8.2 0 15.2 0 31 0 0 1 6 1.326853 5.266667 0 15.2 0 31 0 0 1 25 1.4991608 7.1 0 15.2 0 31 0 0 1 10 1.3814398 5.833333 0 15.2 0 31 0 0 1 22 1.571409 10 0 15.2 0 31 0 0 1 2 1.344622 5.966667 0 15.2 0 31 0 0 1 21 1.5037733 7.133333 0 15.2 0 31 0 0 1 11 1.0092516 4 0 15.2 0 31 0 0 1 27 1.3229584 5.8 0 15.2 0 31 0 0 1 24 1.515344 8 0 15.2 0 31 0 0 1 5 1.308136 6.166667 0 15.2 0 31 0 0 1 18 1.2208875 6.1 0 15.2 0 31 0 0 1 17 1.5226165 9.666667 0 15.2 0 31 0 0 1 3 1.3463856 6.1 0 15.2 0 31 0 0 1 19 1.293655 4.5666666 0 15.2 0 31 0 0 1 26 1.4713204 8.633333 0 15.2 0 31 0 0 1 4 1.5424006 6.6 0 15.2 0 31 0 0 1 15 1.3848766 6.233333 0 15.2 0 31 0 0 1 16 1.459566 7.233333 0 15.2 0 31 0 0 1 13 1.6085333 7.4 0 15.2 0 31 0 0 1 9 1.647645 8.066667 0 15.2 0 31 0 0 1 7 1.3517323 6 0 15.2 0 31 0 0 1 20 1.6233677 7.666667 0 15.2 0 31 0 0 1 8 1.6054567 10.166667 0 15.2 0 31 0 0 1 1 1.5083646 7.233333 0 15.2 0 31 0 0 1 12 1.4547566 7 0 15.2 0 31 0 0 1 14 1.3759344 8.5 0 14.8 0 34.7 0 1 5 1 1.340967 8.466666 0 14.8 0 34.7 0 1 5 2 1.39297 8.3 0 14.8 0 34.7 0 1 5 3 1.2671355 7.9 0 14.8 0 34.7 0 1 5 4 1.355654 7.633333 0 14.8 0 34.7 0 1 5 5 1.264284 7.6 0 14.8 0 34.7 0 1 5 6 1.329109 7.566667 0 14.8 0 34.7 0 1 5 7 1.389986 7.5 0 14.8 0 34.7 0 1 5 8 1.3710886 7.4 0 14.8 0 34.7 0 1 5 9 1.3964932 7.366667 0 14.8 0 34.7 0 1 5 10 1.4844826 7.2 0 14.8 0 34.7 0 1 5 11 1.461243 6.9 0 14.8 0 34.7 0 1 5 12 1.3860266 6.466667 0 14.8 0 34.7 0 1 5 13 1.4975384 6.1 0 14.8 0 34.7 0 1 5 14 1.3944175 5.866667 0 14.8 0 34.7 0 1 5 15 1.3775647 5.666667 0 14.8 0 34.7 0 1 5 16 1.440593 5.566667 0 14.8 0 34.7 0 1 5 17 1.5603316 5.3 0 14.8 0 34.7 0 1 5 18 1.6085224 4.833333 0 14.8 0 34.7 0 1 5 19 1.487191 4.4 0 14.8 0 34.7 0 1 5 20 1.3886967 4.133333 0 14.8 0 34.7 0 1 5 21 1.5917844 4 0 14.8 0 34.7 0 1 5 22 1.535788 3.9 0 14.8 0 34.7 0 1 5 23 1.3547676 3.766667 0 14.8 0 34.7 0 1 5 24 1.2802128 3.6333334 0 14.8 0 34.7 0 1 5 25 1.4500685 3.6333334 0 14.8 0 34.7 0 1 5 26 1.0170058 3.7 0 14.8 0 34.7 0 1 5 27 1.9711658 9.733334 0 13.8 0 24.3 0 1 4 1 2.0133007 9.7 0 13.8 0 24.3 0 1 4 2 1.9733152 9.566667 0 13.8 0 24.3 0 1 4 3 1.9450053 9 0 13.8 0 24.3 0 1 4 4 1.844171 8.666667 0 13.8 0 24.3 0 1 4 5 1.9472215 8.533334 0 13.8 0 24.3 0 1 4 6 1.8656484 8.2 0 13.8 0 24.3 0 1 4 7 1.827142 7.933333 0 13.8 0 24.3 0 1 4 8 1.8857902 7.9 0 13.8 0 24.3 0 1 4 9 1.826929 7.833333 0 13.8 0 24.3 0 1 4 10 1.8903527 7.733333 0 13.8 0 24.3 0 1 4 11 1.7461482 7.5 0 13.8 0 24.3 0 1 4 12 1.7260584 7.133333 0 13.8 0 24.3 0 1 4 13 1.7974557 6.833333 0 13.8 0 24.3 0 1 4 14 1.850183 6.633333 0 13.8 0 24.3 0 1 4 15 1.7900453 6.533333 0 13.8 0 24.3 0 1 4 16 1.6980425 6.333333 0 13.8 0 24.3 0 1 4 17 1.7348562 6.1 0 13.8 0 24.3 0 1 4 18 1.6200815 5.966667 0 13.8 0 24.3 0 1 4 19 end
The dependent variable trends as follows:
I want to estimate the effect of a policy change, which occurred at different calendar times in different states, on this dependent variable. However, I am concerned that the downward trend in the dependent variable will confound my policy impact. So I want to detrend the dependent variable for state specific trends. Would something like this work:
Code:
. reg y i.stateFIPS#(c.qtr c.qtrsq) Source | SS df MS Number of obs = 1,377 -------------+---------------------------------- F(102, 1274) = 46.27 Model | 102.154207 102 1.00151183 Prob > F = 0.0000 Residual | 27.5753612 1,274 .021644711 R-squared = 0.7874 -------------+---------------------------------- Adj R-squared = 0.7704 Total | 129.729568 1,376 .094280209 Root MSE = .14712 ----------------------------------------------------------------------------------- y | Coef. Std. Err. t P>|t| [95% Conf. Interval] ------------------+---------------------------------------------------------------- stateFIPS#c.qtr | 1 | .0101869 .0073169 1.39 0.164 -.0041676 .0245413 2 | -.0096054 .0073169 -1.31 0.189 -.0239599 .004749 4 | .0615533 .0073169 8.41 0.000 .0471989 .0759077 5 | -.0083491 .0073169 -1.14 0.254 -.0227035 .0060054 6 | -.0028259 .0073169 -0.39 0.699 -.0171804 .0115285 8 | .0016657 .0073169 0.23 0.820 -.0126888 .0160201 9 | -.0262667 .0073169 -3.59 0.000 -.0406211 -.0119122 10 | -.1717266 .0073169 -23.47 0.000 -.1860811 -.1573722 11 | .0168328 .0073169 2.30 0.022 .0024784 .0311872 12 | -.0233691 .0073169 -3.19 0.001 -.0377235 -.0090146 13 | .0146922 .0073169 2.01 0.045 .0003378 .0290467 15 | -.0332974 .0073169 -4.55 0.000 -.0476519 -.018943 16 | .0100183 .0073169 1.37 0.171 -.0043362 .0243727 17 | -.0219212 .0073169 -3.00 0.003 -.0362757 -.0075668 18 | .0282955 .0073169 3.87 0.000 .013941 .0426499 19 | .0118876 .0073169 1.62 0.104 -.0024668 .0262421 20 | .0001 .0073169 0.01 0.989 -.0142544 .0144545 21 | .0496271 .0073169 6.78 0.000 .0352726 .0639815 22 | -.0031451 .0073169 -0.43 0.667 -.0174995 .0112094 23 | .0341882 .0073169 4.67 0.000 .0198337 .0485426 24 | .0336763 .0073169 4.60 0.000 .0193219 .0480307 25 | -.0777745 .0073169 -10.63 0.000 -.0921289 -.06342 26 | .0188694 .0073169 2.58 0.010 .0045149 .0332238 27 | .0282355 .0073169 3.86 0.000 .0138811 .04259 28 | -.0189353 .0073169 -2.59 0.010 -.0332897 -.0045809 29 | .0217946 .0073169 2.98 0.003 .0074402 .0361491 30 | -.0228429 .0073169 -3.12 0.002 -.0371974 -.0084885 31 | -.0234632 .0073169 -3.21 0.001 -.0378177 -.0091088 32 | .0075364 .0073169 1.03 0.303 -.0068181 .0218908 33 | -.005729 .0073169 -0.78 0.434 -.0200835 .0086254 34 | -.040529 .0073169 -5.54 0.000 -.0548834 -.0261745 35 | .0641529 .0073169 8.77 0.000 .0497985 .0785074 36 | -.035125 .0073169 -4.80 0.000 -.0494795 -.0207706 37 | .0234468 .0073169 3.20 0.001 .0090924 .0378013 38 | -.0141182 .0073169 -1.93 0.054 -.0284727 .0002362 39 | -.0265678 .0073169 -3.63 0.000 -.0409223 -.0122134 40 | .0513108 .0073169 7.01 0.000 .0369564 .0656653 41 | .0457489 .0073169 6.25 0.000 .0313944 .0601033 42 | -.0320307 .0073169 -4.38 0.000 -.0463851 -.0176762 44 | -.0445802 .0073169 -6.09 0.000 -.0589346 -.0302257 45 | -.0463253 .0073169 -6.33 0.000 -.0606798 -.0319709 46 | .0274279 .0073169 3.75 0.000 .0130734 .0417823 47 | -.0078333 .0073169 -1.07 0.285 -.0221878 .0065211 48 | -.0124892 .0073169 -1.71 0.088 -.0268436 .0018652 49 | .0583917 .0073169 7.98 0.000 .0440372 .0727461 50 | -.0453945 .0073169 -6.20 0.000 -.0597489 -.03104 51 | .0268364 .0073169 3.67 0.000 .012482 .0411909 53 | .0082139 .0073169 1.12 0.262 -.0061406 .0225683 54 | .0627968 .0073169 8.58 0.000 .0484424 .0771513 55 | -.0163769 .0073169 -2.24 0.025 -.0307314 -.0020225 56 | .0180831 .0073169 2.47 0.014 .0037287 .0324375 | stateFIPS#c.qtrsq | 1 | -.0008639 .000337 -2.56 0.010 -.0015251 -.0002027 2 | .0001878 .000337 0.56 0.578 -.0004734 .000849 4 | -.0025389 .000337 -7.53 0.000 -.0032001 -.0018777 5 | .0001467 .000337 0.44 0.663 -.0005145 .000808 6 | -.0004973 .000337 -1.48 0.140 -.0011585 .0001639 8 | -.0004861 .000337 -1.44 0.149 -.0011473 .0001751 9 | .0003765 .000337 1.12 0.264 -.0002847 .0010377 10 | .0049926 .000337 14.81 0.000 .0043314 .0056538 11 | -.0012253 .000337 -3.64 0.000 -.0018865 -.0005641 12 | .0002879 .000337 0.85 0.393 -.0003733 .0009491 13 | -.0008 .000337 -2.37 0.018 -.0014613 -.0001388 15 | .0007371 .000337 2.19 0.029 .0000759 .0013983 16 | -.0003933 .000337 -1.17 0.243 -.0010545 .0002679 17 | .0005376 .000337 1.60 0.111 -.0001236 .0011988 18 | -.0014073 .000337 -4.18 0.000 -.0020685 -.0007461 19 | -.0006573 .000337 -1.95 0.051 -.0013185 3.97e-06 20 | -.0001804 .000337 -0.54 0.593 -.0008416 .0004808 21 | -.0022882 .000337 -6.79 0.000 -.0029494 -.001627 22 | -.0003891 .000337 -1.15 0.248 -.0010504 .0002721 23 | -.0020724 .000337 -6.15 0.000 -.0027337 -.0014112 24 | -.0015277 .000337 -4.53 0.000 -.002189 -.0008665 25 | .0016399 .000337 4.87 0.000 .0009786 .0023011 26 | -.0011828 .000337 -3.51 0.000 -.0018441 -.0005216 27 | -.0012708 .000337 -3.77 0.000 -.001932 -.0006096 28 | .0004139 .000337 1.23 0.220 -.0002473 .0010752 29 | -.0009446 .000337 -2.80 0.005 -.0016058 -.0002834 30 | .0002965 .000337 0.88 0.379 -.0003647 .0009577 31 | .0004801 .000337 1.42 0.155 -.0001811 .0011413 32 | -.0006448 .000337 -1.91 0.056 -.001306 .0000164 33 | -.0005403 .000337 -1.60 0.109 -.0012016 .0001209 34 | .0006858 .000337 2.03 0.042 .0000246 .0013471 35 | -.0024695 .000337 -7.33 0.000 -.0031307 -.0018083 36 | .0004838 .000337 1.44 0.151 -.0001774 .001145 37 | -.0012028 .000337 -3.57 0.000 -.001864 -.0005416 38 | .0000357 .000337 0.11 0.916 -.0006255 .000697 39 | .0003739 .000337 1.11 0.268 -.0002873 .0010351 40 | -.0026394 .000337 -7.83 0.000 -.0033007 -.0019782 41 | -.0019212 .000337 -5.70 0.000 -.0025824 -.00126 42 | .0004942 .000337 1.47 0.143 -.000167 .0011554 44 | .0006863 .000337 2.04 0.042 .0000251 .0013476 45 | .0011171 .000337 3.31 0.001 .0004559 .0017783 46 | -.0011357 .000337 -3.37 0.001 -.0017969 -.0004745 47 | -.0000664 .000337 -0.20 0.844 -.0007276 .0005948 48 | -.0004354 .000337 -1.29 0.197 -.0010966 .0002258 49 | -.0021941 .000337 -6.51 0.000 -.0028553 -.0015329 50 | .0010612 .000337 3.15 0.002 .0004 .0017224 51 | -.001372 .000337 -4.07 0.000 -.0020332 -.0007108 53 | -.0007298 .000337 -2.17 0.031 -.001391 -.0000685 54 | -.0032287 .000337 -9.58 0.000 -.00389 -.0025675 55 | 6.24e-06 .000337 0.02 0.985 -.000655 .0006675 56 | -.0010164 .000337 -3.02 0.003 -.0016776 -.0003552 | _cons | 1.50572 .0128329 117.33 0.000 1.480544 1.530896 ----------------------------------------------------------------------------------- . predict residual (option xb assumed; fitted values)
Then my difference in difference model on the detrended y yields a significant negative effect of the policy (post coef = -.0386):
Code:
. reg residual x1 x2 x3 x4 x5 x6 post i.stateFIPS i.qtr note: x2 omitted because of collinearity note: x6 omitted because of collinearity note: 11.stateFIPS omitted because of collinearity note: 55.stateFIPS omitted because of collinearity note: 56.stateFIPS omitted because of collinearity Source | SS df MS Number of obs = 1,377 -------------+---------------------------------- F(78, 1298) = 133.01 Model | 90.7949725 78 1.16403811 Prob > F = 0.0000 Residual | 11.3592347 1,298 .008751336 R-squared = 0.8888 -------------+---------------------------------- Adj R-squared = 0.8821 Total | 102.154207 1,376 .074239976 Root MSE = .09355 ------------------------------------------------------------------------------ residual | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- x1 | .0035849 .0039518 0.91 0.364 -.0041676 .0113375 x2 | 0 (omitted) x3 | .0118283 .0034257 3.45 0.001 .0051077 .0185488 x4 | -2.731964 .3172617 -8.61 0.000 -3.354366 -2.109562 x5 | -.0938331 .0106236 -8.83 0.000 -.1146744 -.0729917 x6 | 0 (omitted) post | -.0386808 .0099583 -3.88 0.000 -.0582169 -.0191447 | stateFIPS | 2 | -.2268543 .0370268 -6.13 0.000 -.2994932 -.1542154 4 | -.3231626 .0750945 -4.30 0.000 -.4704826 -.1758427 5 | .3593828 .0456977 7.86 0.000 .2697333 .4490323 6 | -1.099535 .1196842 -9.19 0.000 -1.334331 -.8647392 8 | -.8164939 .095571 -8.54 0.000 -1.003984 -.6290034 9 | -.4645109 .0411922 -11.28 0.000 -.5453214 -.3837004 10 | -.9502182 .0229396 -41.42 0.000 -.9952209 -.9052155 11 | 0 (omitted) 12 | -.3138271 .02854 -11.00 0.000 -.3698166 -.2578376 13 | -.1578921 .0400929 -3.94 0.000 -.2365462 -.0792381 15 | -.4124152 .0352231 -11.71 0.000 -.4815156 -.3433147 16 | -.1337408 .0378564 -3.53 0.000 -.2080073 -.0594743 17 | -.4724284 .0507404 -9.31 0.000 -.5719705 -.3728862 18 | .4740916 .0421783 11.24 0.000 .3913465 .5568367 19 | .2522985 .0275205 9.17 0.000 .1983089 .3062881 20 | -.3061665 .0467358 -6.55 0.000 -.3978525 -.2144804 21 | .4305158 .0350614 12.28 0.000 .3617327 .499299 22 | .2269841 .0399822 5.68 0.000 .1485473 .3054208 23 | .3208386 .0372314 8.62 0.000 .2477983 .3938789 24 | -.3060908 .059287 -5.16 0.000 -.4223997 -.189782 25 | -1.05629 .0619034 -17.06 0.000 -1.177732 -.9348483 26 | -.0326161 .0244002 -1.34 0.182 -.0804842 .0152521 27 | -.2442294 .0537343 -4.55 0.000 -.349645 -.1388139 28 | -.1595395 .030748 -5.19 0.000 -.2198607 -.0992184 29 | .2018182 .021303 9.47 0.000 .1600261 .2436103 30 | -.1746438 .0237416 -7.36 0.000 -.2212199 -.1280676 31 | -.4193474 .0429293 -9.77 0.000 -.5035658 -.335129 32 | -.221543 .0396223 -5.59 0.000 -.2992738 -.1438123 33 | -.2716373 .0304933 -8.91 0.000 -.3314588 -.2118158 34 | -.5154921 .0345198 -14.93 0.000 -.5832128 -.4477714 35 | -.0600308 .0575068 -1.04 0.297 -.1728472 .0527856 36 | -.681392 .0550147 -12.39 0.000 -.7893194 -.5734646 37 | -.3158125 .0542029 -5.83 0.000 -.4221473 -.2094776 38 | -.3476213 .0388321 -8.95 0.000 -.4238019 -.2714407 39 | .1349002 .0395289 3.41 0.001 .0573527 .2124478 40 | .2245536 .0241773 9.29 0.000 .1771228 .2719844 41 | -.3779333 .0744882 -5.07 0.000 -.5240638 -.2318028 42 | .2885267 .0605207 4.77 0.000 .1697977 .4072557 44 | -.6484624 .0415649 -15.60 0.000 -.7300042 -.5669206 45 | -.4069094 .0286922 -14.18 0.000 -.4631975 -.3506213 46 | .2403485 .0228723 10.51 0.000 .1954778 .2852193 47 | .1612768 .0307361 5.25 0.000 .100979 .2215746 48 | -.7860045 .073861 -10.64 0.000 -.9309044 -.6411046 49 | -.3052601 .0805196 -3.79 0.000 -.4632229 -.1472973 50 | -.2701797 .023664 -11.42 0.000 -.3166035 -.2237559 51 | -.4430127 .0694176 -6.38 0.000 -.5791958 -.3068297 53 | -.6836086 .0840446 -8.13 0.000 -.8484866 -.5187305 54 | 1.05769 .1030456 10.26 0.000 .8555356 1.259844 55 | 0 (omitted) 56 | 0 (omitted) | qtr | 2 | -.0016093 .0185319 -0.09 0.931 -.0379651 .0347466 3 | -.0043002 .0185427 -0.23 0.817 -.0406771 .0320767 4 | -.0071332 .0186285 -0.38 0.702 -.0436786 .0294121 5 | -.0100458 .0188005 -0.53 0.593 -.0469286 .0268369 6 | -.0153749 .0188762 -0.81 0.416 -.0524062 .0216563 7 | -.0184755 .0190116 -0.97 0.331 -.0557723 .0188214 8 | -.0254947 .019144 -1.33 0.183 -.0630511 .0120618 9 | -.0335697 .0192495 -1.74 0.081 -.0713332 .0041938 10 | -.0422743 .019455 -2.17 0.030 -.080441 -.0041076 11 | -.0495603 .0197447 -2.51 0.012 -.0882952 -.0108253 12 | -.0590254 .0201436 -2.93 0.003 -.0985429 -.0195078 13 | -.0701244 .0205911 -3.41 0.001 -.1105199 -.029729 14 | -.0822513 .0210276 -3.91 0.000 -.1235031 -.0409995 15 | -.0938398 .0215002 -4.36 0.000 -.1360187 -.051661 16 | -.1078958 .0219422 -4.92 0.000 -.1509418 -.0648497 17 | -.1230193 .0223146 -5.51 0.000 -.166796 -.0792426 18 | -.1384379 .0226342 -6.12 0.000 -.1828415 -.0940344 19 | -.1545704 .0230916 -6.69 0.000 -.1998714 -.1092694 20 | -.1688398 .0235017 -7.18 0.000 -.2149454 -.1227343 21 | -.1872645 .023678 -7.91 0.000 -.2337158 -.1408132 22 | -.2074262 .0237811 -8.72 0.000 -.2540799 -.1607726 23 | -.2277191 .0239327 -9.51 0.000 -.27467 -.1807682 24 | -.2495076 .0241732 -10.32 0.000 -.2969304 -.2020848 25 | -.26958 .0247675 -10.88 0.000 -.3181688 -.2209912 26 | -.2922181 .0252109 -11.59 0.000 -.3416767 -.2427595 27 | -.316041 .0254653 -12.41 0.000 -.3659987 -.2660834 | _cons | 4.240146 .3139534 13.51 0.000 3.624234 4.856057 ------------------------------------------------------------------------------
Is this correct? I would greatly appreciate any help.
Sincerely,
Sumedha.
Comment