Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Using xtabond2 command

    Hi Statalist members,
    I am using GMM for my thesis. I have read papers and topics here but I am not sure about my knowledge so I would like to hear from you.
    My data has 1 dependent, 8 independent and 4 control variables. I am coding as following:

    xtabond2 Adj_TobinQt1 l.Adj_TobinQt1 Firm_age FirmSize TEAMSIZE GENDIV EDLEVDIV EDBGRDIV EDCTRDIV NUMFIRDIV NUMINDDIV INTEXPDIV CERTDIV MEMSDIV y*, gmm( Adj_TobinQt1 , lag (3 5) collapse) gmm( FirmSize TEAMSIZE GENDIV EDLEVDIV EDBGRDIV EDCTRDIV NUMFIRDIV NUMINDDIV INTEXPDIV CERTDIV MEMSDIV, lag(2 2) collapse) iv(Firm_age y*, eq(level)) nodiffsargan robust orthogonal small


    Dynamic panel-data estimation, one-step system GMM
    ------------------------------------------------------------------------------
    Group variable: FCode1 Number of obs = 697
    Time variable : Year Number of groups = 192
    Number of instruments = 30 Obs per group: min = 1
    F(18, 191) = 2.99 avg = 3.63
    Prob > F = 0.000 max = 4
    ------------------------------------------------------------------------------
    | Robust
    Adj_TobinQt1 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
    -------------+----------------------------------------------------------------
    Adj_TobinQt1 |
    L1. | .6119378 .1582645 3.87 0.000 .299767 .9241086
    |
    Firm_age | .0001865 .0007226 0.26 0.797 -.0012388 .0016118
    FirmSize | -.0554582 .0435507 -1.27 0.204 -.1413602 .0304439
    TEAMSIZE | .194183 .2038116 0.95 0.342 -.2078277 .5961936
    GENDIV | -.1115258 .2900493 -0.38 0.701 -.683637 .4605855
    EDLEVDIV | -.1567298 .3364569 -0.47 0.642 -.8203783 .5069187
    EDBGRDIV | .1727845 .2767815 0.62 0.533 -.3731565 .7187255
    EDCTRDIV | -.0414589 .1951742 -0.21 0.832 -.4264325 .3435148
    NUMFIRDIV | .5470325 .3048599 1.79 0.074 -.054292 1.148357
    NUMINDDIV | -.8538604 .3935092 -2.17 0.031 -1.630042 -.0776785
    INTEXPDIV | -.1214908 .1830203 -0.66 0.508 -.4824914 .2395097
    CERTDIV | -.0172855 .0992637 -0.17 0.862 -.2130794 .1785085
    MEMSDIV | -.0050279 .0356161 -0.14 0.888 -.0752793 .0652235
    y1 | 0 (omitted)
    y2 | .0050771 .0340706 0.15 0.882 -.0621259 .07228
    y3 | .0402348 .0292479 1.38 0.171 -.0174557 .0979252
    y4 | .0370028 .0247063 1.50 0.136 -.0117293 .085735
    y5 | 0 (omitted)
    _cons | .6623994 .7719175 0.86 0.392 -.8601786 2.184977
    ------------------------------------------------------------------------------
    Instruments for orthogonal deviations equation
    GMM-type (missing=0, separate instruments for each period unless collapsed)
    L2.(FirmSize TEAMSIZE GENDIV EDLEVDIV EDBGRDIV EDCTRDIV NUMFIRDIV
    NUMINDDIV INTEXPDIV CERTDIV MEMSDIV) collapsed
    L(3/4).Adj_TobinQt1 collapsed
    Instruments for levels equation
    Standard
    Firm_age y1 y2 y3 y4 y5
    _cons
    GMM-type (missing=0, separate instruments for each period unless collapsed)
    DL.(FirmSize TEAMSIZE GENDIV EDLEVDIV EDBGRDIV EDCTRDIV NUMFIRDIV
    NUMINDDIV INTEXPDIV CERTDIV MEMSDIV) collapsed
    DL2.Adj_TobinQt1 collapsed
    ------------------------------------------------------------------------------
    Arellano-Bond test for AR(1) in first differences: z = -3.37 Pr > z = 0.001
    Arellano-Bond test for AR(2) in first differences: z = 0.42 Pr > z = 0.671
    ------------------------------------------------------------------------------
    Sargan test of overid. restrictions: chi2(11) = 18.88 Prob > chi2 = 0.063
    (Not robust, but not weakened by many instruments.)
    Hansen test of overid. restrictions: chi2(11) = 14.19 Prob > chi2 = 0.223
    (Robust, but weakened by many instruments.)

    Am I doing it right?
    In the case of doing GMM with interaction and non-linear, is there any difference with OLS? (I mean in adding interaction and non-linear variables to models).
    Thanks for your read and help.
Working...
X