Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • lincom after transform_margins

    Hi
    I was wondering how to obtain appropriate lincom results after using transform_margins.

    I am using svy:logistic to analyze a survey database. Margins after the svy:logistic model gave confidence intervals with negative values, so I used margins with the linear predictor, and then used transform_margins discussed by Jeff Pitblado here :
    https://stats.stackexchange.com/ques...rgins-in-stata

    This provided estimates with confidence intervals that were not negative.

    I would like to assess the difference between two levels of a variable for the linear predictor margins, and ensure that the confidence intervals are appropriate. lincom does not seem to be appropriate for the linear predictor margins. I have tried nlcom with the invlogit of each of the estimates, and this seems to provide a reasonable estimate. However, does anyone know if this provides the appropriate estimate and confidence interval for the difference?

    an example is below:
    Code:
    . webuse nhanes2
    . quietly svy, subpop(if agegrp>3):logit diabetes bmi black##female
    
    *using the probabilities
    **********************************************************************
    . margins female, at(black=(0 1)) subpop(if agegrp>3) vce(unconditional) post
    ------------------------------------------------------------------------------
                 |             Linearized
                 |     Margin   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
      _at#female |
            1 0  |   .0672466   .0073744     9.12   0.000     .0522064    .0822868
            1 1  |    .066051    .004407    14.99   0.000     .0570628    .0750391
            2 0  |   .1287978   .0245295     5.25   0.000     .0787696    .1788259
            2 1  |   .0915743   .0170822     5.36   0.000     .0567349    .1264138
    ------------------------------------------------------------------------------
    
    
    . lincom _b[2._at#1.female]-_b[1bn._at#1.female]
    ------------------------------------------------------------------------------
                 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
             (1) |   .0255234   .0176777     1.44   0.159    -.0105305    .0615773
    ------------------------------------------------------------------------------
    
    . 
    
    
    *using the linear predictor
    **********************************************************************
    . margins female, at(black=(0 1)) subpop(if agegrp>3) vce(unconditional) exp(predict(xb)) post
    ------------------------------------------------------------------------------
                 |             Linearized
                 |     Margin   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
      _at#female |
            1 0  |  -2.676449   .1199975   -22.30   0.000    -2.921185   -2.431712
            1 1  |  -2.695843   .0717618   -37.57   0.000    -2.842202   -2.549484
            2 0  |  -1.949814   .2179706    -8.95   0.000    -2.394368    -1.50526
            2 1  |  -2.337782    .211021   -11.08   0.000    -2.768162   -1.907402
    ------------------------------------------------------------------------------
    
    . transform_margins invlogit(@)
    ----------------------------------------------
                 |         b         ll         ul
    -------------+--------------------------------
      _at#female |
            1 0  |  .0643774   .0511162   .0807862
            1 1  |  .0632191   .0550858   .0724611
            2 0  |  .1245737   .0836032   .1816423
            2 1  |  .0880418   .0590691    .129273
    ----------------------------------------------
    
    
    . lincom _b[2._at#1.female]-_b[1bn._at#1.female]
    ------------------------------------------------------------------------------
                 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
             (1) |    .358061   .2201364     1.63   0.114    -.0909101    .8070322
    ------------------------------------------------------------------------------
    
    
    . nlcom invlogit(_b[2._at#1.female])-invlogit(_b[1bn._at#1.female])
    ------------------------------------------------------------------------------
                 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
           _nl_1 |   .0248227   .0173011     1.43   0.151    -.0090867    .0587322
    ------------------------------------------------------------------------------
Working...
X