Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Prallel Trend assumption with time varying treatment variable?

    Hi all

    i am analyzing the effects of divorce for men and women on life satisfaction

    For this i have long shaped data of married couples .

    The treatment group consists of individuals who got divorced (only their first divorce during the observation period will be taken into consideration)
    The control group consinst of individuals who never got divorced during the observation period

    Code:
    * Example generated by -dataex-. To install: ssc install dataex
    clear
    input long pid byte sex float(treat kidsyes age age2) long labinc float labinc2
     101 1 0 0 54 2916  23232   539725824
     101 1 0 0 55 3025  16330   266668896
     101 1 0 0 56 3136  23264   541213696
     101 1 0 0 57 3249   4901    24019800
     101 1 0 0 58 3364  15268   233111824
     101 1 0 0 59 3481  18875   356265632
     102 2 0 0 44 1936      0           0
     102 2 0 0 45 2025      0           0
     102 2 0 0 46 2116      0           0
     102 2 0 0 47 2209      0           0
     102 2 0 0 48 2304      0           0
     102 2 0 0 49 2401      0           0
     301 1 0 1 25  625   4602    21178404
     301 1 0 1 26  676  21781   474411968
     301 1 0 1 27  729   7976    63616576
     301 1 0 1 28  784  12424   154355776
     301 1 0 1 29  841   6136    37650496
     301 1 0 1 30  900  11964   143137296
     301 1 0 1 31  961  14725   216825632
     301 1 0 1 32 1024      0           0
     301 1 0 1 33 1089   6647    44182608
     302 2 0 1 24  576  10175   103530624
     302 2 0 1 25  625   9715    94381224
     302 2 0 1 26  676  14035   196981232
     302 2 0 1 27  729  10318   106461120
     302 2 0 1 28  784      0           0
     302 2 0 1 29  841   7976    63616576
     302 2 0 1 30  900  12207   149010848
     302 2 0 1 31  961   9715    94381224
     302 2 0 1 32 1024      0           0
     601 1 . 1 38 1444  39369  1549918208
     601 1 . 1 39 1521  44278  1960541312
     601 1 . 1 40 1600  41075  1687155584
     601 1 . 1 41 1681  44943  2019873280
     601 1 1 1 42 1764  52177  2722439424
     601 1 . 1 43 1849  48010  2304960000
     601 1 . 0 45 2025  76694  5881969664
     601 1 . 0 46 2116 110439 12196772864
     601 1 . 0 47 2209  85897  7378294784
     601 1 . 0 48 2304 104500 10920250368
     602 2 0 1 33 1089  42795  1831411968
     602 2 0 1 34 1156   6647    44182608
     602 2 0 1 35 1225  18336   336208896
     602 2 0 1 36 1296  19590   383768096
     602 2 0 1 37 1369  21388   457446528
     602 2 0 1 38 1444  21397   457831616
     602 2 0 1 39 1521   4793    22972848
     602 2 0 1 40 1600      0           0
     602 2 0 1 41 1681   1227     1505529
     602 2 0 1 42 1764   9280    86118400
     602 2 0 1 43 1849   3886    15100996
     602 2 0 1 44 1936      0           0
     602 2 0 1 45 2025      0           0
     602 2 0 1 46 2116    600      360000
     602 2 0 1 47 2209    800      640000
     602 2 0 1 48 2304   2400     5760000
     602 2 0 1 49 2401   2200     4840000
     602 2 0 1 50 2500   2200     4840000
     602 2 0 1 51 2601   3900    15210000
     602 2 0 1 52 2704   7620    58064400
     602 2 0 1 53 2809   8760    76737600
     602 2 0 1 54 2916   8160    66585600
    1602 2 0 1 40 1600    309       95481
    1602 2 0 1 41 1681  13259   175801088
    1602 2 0 1 42 1764   4933    24334488
    1602 2 0 0 43 1849   7200    51840000
    1602 2 0 0 44 1936   4200    17640000
    1602 2 0 0 45 2025   3600    12960000
    1602 2 0 0 46 2116   6120    37454400
    1602 2 0 0 47 2209   4788    22924944
    1602 2 0 0 48 2304   4800    23040000
    1704 2 0 1 30  900   3860    14899600
    1704 2 0 1 31  961   9029    81522840
    1704 2 0 1 32 1024  13409   179801280
    1704 2 0 1 33 1089  14751   217592000
    1704 2 0 1 34 1156  10277   105616728
    1704 2 0 1 35 1225  19864   394578496
    1704 2 0 1 36 1296  23826   567678272
    1704 2 0 1 37 1369  23450   549902528
    1704 2 0 1 38 1444  21474   461132672
    1704 2 0 1 39 1521  25811   666207744
    1704 2 0 1 40 1600  27605   762036032
    1704 2 0 1 41 1681  26587   706868544
    1704 2 0 1 42 1764  27205   740112000
    1704 2 0 1 43 1849  28223   796537728
    1704 2 0 1 44 1936  30106   906371264
    1704 2 0 1 45 2025  30667   940464896
    1704 2 0 1 46 2116  32952  1085834240
    1704 2 0 0 47 2209  32490  1055600128
    1704 2 0 0 48 2304  33574  1127213440
    1704 2 0 0 49 2401  34816  1212153856
    1704 2 0 0 50 2500  35880  1287374336
    1704 2 0 0 51 2601  28200   795240000
    2101 1 0 0 56 3136  19409   376709280
    2101 1 0 0 57 3249  19378   375506880
    2101 1 0 0 58 3364  20356   414366720
    2101 1 0 0 59 3481  20508   420578048
    2101 1 0 0 60 3600  21223   450415744
    2102 2 0 0 57 3249   7581    57471560
    2102 2 0 0 58 3364   1074     1153476
    end
    label values sex sex
    label def sex 1 "[1] maennlich", modify
    label def sex 2 "[2] weiblich", modify
    I still have to think about which variables i want to add in the matching step and in the regression.

    My question would be: How can i check for the parallel trend assumption since the treatment (divorce) can occur in any given time period?


    I don't know if this information will be helpful.

    For the analysis i am using the DiD estimation combined with entropy balancing (matching which is superior to ps matching etc.)

    So for the first part of the estimation i ran this...

    Code:
    set more off
    
    global exact welle_*
    
    global xvars age age2 mig foreign lifesat lifesat2 uni voctrain labinc labinc2 pgerwzeit pgerwzeit2 nounemp pgexpft pgexpft2 kids
             * badhlth medhlth goodhlth  psbil2_?  ///
    
    
    
    use "$posted/data", clear
    
    
    * Step 1: calculate the weights within different sub-datasets defined by gender
        foreach yesno in 0 1 {
            use "$posted/data", clear
            keep if female==`yesno'
            sort random
            ebalance treat $xvars welle_*, gen(w_treat) maxiter(100) targets(1)
            keep pid syear w_treat
            save "$tables/match_`yesno'", replace
        }
    
    * combine the sub-datasets
        use     "$tables/match_0", clear
        append using "$tables/match_1"
    
        sort pid syear
        save "$tables/matched", replace
    
        use "$posted/data", clear
        merge 1:1 pid syear using "$tables/matched.dta", keep(master match) nogen
    i used those weights to run the following regression

    Code:
    * gender-specific anayles
    foreach x in 0 1 {
        preserve
        keep if female==`x'
        foreach y in lifesat {
            reg d1`y' treat $xvars $exact [weight=w_treat]
            est store m`x'_1
            qui count if treat==1 & e(sample)
            estadd scalar obs =r(N)
        }
        restore
    }
    If you need more information to help me solve this question, feel free to ask.

    Thank you
Working...
X