Dear Sebastian,
I hope you are fine in these difficult days. I would really appreciate if you could answer my question below:
The only difference between the 2 models below is the number of lags of variable SIZE_w. When I decrease the number of lag of SIZE_w from 3 to 2, the incremental overidentificaton tests for exogeneous instruments (ICBIC represent INDUSTRY) produce unsatisfactory results. How can I explain this situation while interpreting my results?
I hope you are fine in these difficult days. I would really appreciate if you could answer my question below:
The only difference between the 2 models below is the number of lags of variable SIZE_w. When I decrease the number of lag of SIZE_w from 3 to 2, the incremental overidentificaton tests for exogeneous instruments (ICBIC represent INDUSTRY) produce unsatisfactory results. How can I explain this situation while interpreting my results?
Code:
xtdpdgmm L(0/2).TOBINSQ_w ESG CAPEXSALES_w L(0/3).SIZE_w ROA_w LEV_w i.ICBIC , model(fod) collapse gmm( TOBINSQ_w , lag(1 .)) gmm(ESG , > lag(1.)) gmm( ROA_w ,lag(1 .))gmm( SIZE_w ,lag(1 .)) gmm( LEV_w , lag(1 .)) gmm( CAPEXSALES_w , lag(1 .)) gmm(LEV_w SIZE_w ROA_w CAPEXS > ALES_w ESG, lag(0 0)) iv(i.ICBIC, model(level)) teffects two vce(r) overid Generalized method of moments estimation Fitting full model: Step 1 f(b) = .01303283 Step 2 f(b) = .10188116 Fitting reduced model 1: Step 1 f(b) = .07870622 Fitting reduced model 2: Step 1 f(b) = .09621081 Fitting reduced model 3: Step 1 f(b) = .08887677 Fitting reduced model 4: Step 1 f(b) = .09052209 Fitting reduced model 5: Step 1 f(b) = .09879314 Fitting reduced model 6: Step 1 f(b) = .07764848 Fitting reduced model 7: Step 1 f(b) = .09606716 Fitting reduced model 8: Step 1 f(b) = .08450391 Fitting reduced model 9: Step 1 f(b) = .08450391 Fitting no-level model: Step 1 f(b) = .08450391 Group variable: ID Number of obs = 2002 Time variable: YEAR Number of groups = 413 Moment conditions: linear = 70 Obs per group: min = 1 nonlinear = 0 avg = 4.847458 total = 70 max = 7 (Std. Err. adjusted for 413 clusters in ID) ------------------------------------------------------------------------------ | WC-Robust TOBINSQ_w | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- TOBINSQ_w | L1. | .6874987 .074449 9.23 0.000 .5415812 .8334161 L2. | -.0839133 .0426733 -1.97 0.049 -.1675514 -.0002752 | ESG | -.0058779 .0024605 -2.39 0.017 -.0107004 -.0010555 CAPEXSALES_w | -.0069368 .0032667 -2.12 0.034 -.0133395 -.0005342 | SIZE_w | --. | -.071505 .0689636 -1.04 0.300 -.2066712 .0636612 L1. | .0819699 .0629519 1.30 0.193 -.0414136 .2053534 L2. | -.0250898 .0451815 -0.56 0.579 -.1136439 .0634643 L3. | .0293345 .0430134 0.68 0.495 -.0549703 .1136393 | ROA_w | .0239917 .0058741 4.08 0.000 .0124787 .0355047 LEV_w | .2045407 .3936637 0.52 0.603 -.567026 .9761075 | ICBIC | 15 | -.2333013 .2420391 -0.96 0.335 -.7076891 .2410866 20 | -.057852 .203594 -0.28 0.776 -.4568888 .3411849 30 | -.3756351 .2549801 -1.47 0.141 -.8753869 .1241167 35 | -.3308295 .264687 -1.25 0.211 -.8496066 .1879475 40 | -.0721328 .1996534 -0.36 0.718 -.4634463 .3191808 45 | .2810171 .2315749 1.21 0.225 -.1728615 .7348957 50 | -.2654361 .2397228 -1.11 0.268 -.7352841 .2044119 55 | -.223023 .2460639 -0.91 0.365 -.7052995 .2592534 60 | -.3237489 .2395391 -1.35 0.177 -.793237 .1457392 65 | -.3710317 .2522621 -1.47 0.141 -.8654564 .1233929 | YEAR | 2013 | -.0355795 .0313526 -1.13 0.256 -.0970295 .0258704 2014 | .0415234 .0332967 1.25 0.212 -.023737 .1067837 2015 | .017638 .037172 0.47 0.635 -.0552178 .0904939 2016 | .0042694 .0354168 0.12 0.904 -.0651463 .0736851 2017 | .0565129 .0345025 1.64 0.101 -.0111107 .1241366 2018 | -.0040439 .0366809 -0.11 0.912 -.0759371 .0678493 | _cons | .6553736 .5429982 1.21 0.227 -.4088834 1.719631 ------------------------------------------------------------------------------ Instruments corresponding to the linear moment conditions: 1, model(fodev): L1.TOBINSQ_w L2.TOBINSQ_w L3.TOBINSQ_w L4.TOBINSQ_w L5.TOBINSQ_w L6.TOBINSQ_w L7.TOBINSQ_w L8.TOBINSQ_w 2, model(fodev): L1.ESG L2.ESG L3.ESG L4.ESG L5.ESG L6.ESG L7.ESG L8.ESG 3, model(fodev): L1.ROA_w L2.ROA_w L3.ROA_w L4.ROA_w L5.ROA_w L6.ROA_w L7.ROA_w L8.ROA_w 4, model(fodev): L1.SIZE_w L2.SIZE_w L3.SIZE_w L4.SIZE_w L5.SIZE_w L6.SIZE_w L7.SIZE_w L8.SIZE_w 5, model(fodev): L1.LEV_w L2.LEV_w L3.LEV_w L4.LEV_w L5.LEV_w L6.LEV_w L7.LEV_w L8.LEV_w 6, model(fodev): L1.CAPEXSALES_w L2.CAPEXSALES_w L3.CAPEXSALES_w L4.CAPEXSALES_w L5.CAPEXSALES_w L6.CAPEXSALES_w L7.CAPEXSALES_w L8.CAPEXSALES_w 7, model(fodev): LEV_w SIZE_w ROA_w CAPEXSALES_w ESG 8, model(level): 15bn.ICBIC 20.ICBIC 30.ICBIC 35.ICBIC 40.ICBIC 45.ICBIC 50.ICBIC 55.ICBIC 60.ICBIC 65.ICBIC 9, model(level): 2013bn.YEAR 2014.YEAR 2015.YEAR 2016.YEAR 2017.YEAR 2018.YEAR 10, model(level): _cons . estat serial, ar(1/3) Arellano-Bond test for autocorrelation of the first-differenced residuals H0: no autocorrelation of order 1: z = -3.7580 Prob > |z| = 0.0002 H0: no autocorrelation of order 2: z = -1.0592 Prob > |z| = 0.2895 H0: no autocorrelation of order 3: z = 0.6213 Prob > |z| = 0.5344 . estat overid Sargan-Hansen test of the overidentifying restrictions H0: overidentifying restrictions are valid 2-step moment functions, 2-step weighting matrix chi2(43) = 42.0769 Prob > chi2 = 0.5112 2-step moment functions, 3-step weighting matrix chi2(43) = 43.5511 Prob > chi2 = 0.4479 . estat overid, difference Sargan-Hansen (difference) test of the overidentifying restrictions H0: (additional) overidentifying restrictions are valid 2-step weighting matrix from full model | Excluding | Difference Moment conditions | chi2 df p | chi2 df p ------------------+-----------------------------+----------------------------- 1, model(fodev) | 32.5057 35 0.5891 | 9.5713 8 0.2964 2, model(fodev) | 39.7351 35 0.2672 | 2.3419 8 0.9687 3, model(fodev) | 36.7061 35 0.3897 | 5.3708 8 0.7173 4, model(fodev) | 37.3856 35 0.3601 | 4.6913 8 0.7900 5, model(fodev) | 40.8016 35 0.2305 | 1.2754 8 0.9958 6, model(fodev) | 32.0688 35 0.6104 | 10.0081 8 0.2645 7, model(fodev) | 39.6757 38 0.3952 | 2.4012 5 0.7913 8, model(level) | 34.9001 37 0.5679 | 7.1768 6 0.3048 9, model(level) | 34.9001 37 0.5679 | 7.1768 6 0.3048 model(fodev) | . -10 . | . . . model(level) | 34.9001 27 0.1414 | 7.1768 16 0.9697 . xtdpdgmm L(0/2).TOBINSQ_w ESG CAPEXSALES_w L(0/2).SIZE_w ROA_w LEV_w i.ICBIC , model(fod) collapse gmm( TOBINSQ_w , lag(1 .)) gmm(ESG , > lag(1.)) gmm( ROA_w ,lag(1 .))gmm( SIZE_w ,lag(1 .)) gmm( LEV_w , lag(1 .)) gmm( CAPEXSALES_w , lag(1 .)) gmm(LEV_w SIZE_w ROA_w CAPEXS > ALES_w ESG, lag(0 0)) iv(i.ICBIC, model(level)) teffects two vce(r) overid Generalized method of moments estimation Fitting full model: Step 1 f(b) = .01556283 Step 2 f(b) = .12316875 Fitting reduced model 1: Step 1 f(b) = .10200775 Fitting reduced model 2: Step 1 f(b) = .11302198 Fitting reduced model 3: Step 1 f(b) = .10304694 Fitting reduced model 4: Step 1 f(b) = .10207448 Fitting reduced model 5: Step 1 f(b) = .11697899 Fitting reduced model 6: Step 1 f(b) = .09436803 Fitting reduced model 7: Step 1 f(b) = .11246203 Fitting reduced model 8: Step 1 f(b) = .0839411 Fitting reduced model 9: Step 1 f(b) = .0839411 Fitting no-level model: Step 1 f(b) = .0839411 Group variable: ID Number of obs = 2429 Time variable: YEAR Number of groups = 427 Moment conditions: linear = 71 Obs per group: min = 1 nonlinear = 0 avg = 5.688525 total = 71 max = 8 (Std. Err. adjusted for 427 clusters in ID) ------------------------------------------------------------------------------ | WC-Robust TOBINSQ_w | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- TOBINSQ_w | L1. | .6661253 .0799538 8.33 0.000 .5094187 .8228318 L2. | -.060883 .0515144 -1.18 0.237 -.1618495 .0400835 | ESG | -.0037064 .0018913 -1.96 0.050 -.0074132 4.24e-07 CAPEXSALES_w | -.0032306 .0027834 -1.16 0.246 -.0086859 .0022247 | SIZE_w | --. | -.0764026 .05956 -1.28 0.200 -.193138 .0403329 L1. | .0397292 .0570908 0.70 0.486 -.0721667 .1516251 L2. | .0226691 .0403963 0.56 0.575 -.0565062 .1018444 | ROA_w | .0266766 .0056555 4.72 0.000 .0155921 .0377612 LEV_w | .6162228 .3148211 1.96 0.050 -.0008152 1.233261 | ICBIC | 15 | -.347145 .2236941 -1.55 0.121 -.7855774 .0912874 20 | -.0545094 .1791532 -0.30 0.761 -.4056431 .2966244 30 | -.4764755 .2200233 -2.17 0.030 -.9077132 -.0452377 35 | -.4591035 .2486139 -1.85 0.065 -.9463777 .0281707 40 | -.1824917 .1771518 -1.03 0.303 -.5297029 .1647195 45 | .1921836 .2145475 0.90 0.370 -.2283218 .612689 50 | -.3859718 .2165313 -1.78 0.075 -.8103653 .0384217 55 | -.335951 .2277819 -1.47 0.140 -.7823952 .1104933 60 | -.3697299 .2278514 -1.62 0.105 -.8163104 .0768506 65 | -.4428622 .2398108 -1.85 0.065 -.9128828 .0271584 | YEAR | 2012 | .1369935 .0342361 4.00 0.000 .0698921 .2040949 2013 | .058375 .0339537 1.72 0.086 -.008173 .124923 2014 | .1311551 .0380246 3.45 0.001 .0566283 .2056819 2015 | .1222051 .0349892 3.49 0.000 .0536275 .1907827 2016 | .094505 .0343991 2.75 0.006 .027084 .1619261 2017 | .1535793 .0355352 4.32 0.000 .0839315 .2232271 2018 | .0885713 .03502 2.53 0.011 .0199334 .1572092 | _cons | .692059 .5476086 1.26 0.206 -.381234 1.765352 ------------------------------------------------------------------------------ Instruments corresponding to the linear moment conditions: 1, model(fodev): L1.TOBINSQ_w L2.TOBINSQ_w L3.TOBINSQ_w L4.TOBINSQ_w L5.TOBINSQ_w L6.TOBINSQ_w L7.TOBINSQ_w L8.TOBINSQ_w 2, model(fodev): L1.ESG L2.ESG L3.ESG L4.ESG L5.ESG L6.ESG L7.ESG L8.ESG 3, model(fodev): L1.ROA_w L2.ROA_w L3.ROA_w L4.ROA_w L5.ROA_w L6.ROA_w L7.ROA_w L8.ROA_w 4, model(fodev): L1.SIZE_w L2.SIZE_w L3.SIZE_w L4.SIZE_w L5.SIZE_w L6.SIZE_w L7.SIZE_w L8.SIZE_w 5, model(fodev): L1.LEV_w L2.LEV_w L3.LEV_w L4.LEV_w L5.LEV_w L6.LEV_w L7.LEV_w L8.LEV_w 6, model(fodev): L1.CAPEXSALES_w L2.CAPEXSALES_w L3.CAPEXSALES_w L4.CAPEXSALES_w L5.CAPEXSALES_w L6.CAPEXSALES_w L7.CAPEXSALES_w L8.CAPEXSALES_w 7, model(fodev): LEV_w SIZE_w ROA_w CAPEXSALES_w ESG 8, model(level): 15bn.ICBIC 20.ICBIC 30.ICBIC 35.ICBIC 40.ICBIC 45.ICBIC 50.ICBIC 55.ICBIC 60.ICBIC 65.ICBIC 9, model(level): 2012bn.YEAR 2013.YEAR 2014.YEAR 2015.YEAR 2016.YEAR 2017.YEAR 2018.YEAR 10, model(level): _cons . estat serial, ar(1/3) Arellano-Bond test for autocorrelation of the first-differenced residuals H0: no autocorrelation of order 1: z = -4.1569 Prob > |z| = 0.0000 H0: no autocorrelation of order 2: z = -1.2273 Prob > |z| = 0.2197 H0: no autocorrelation of order 3: z = -1.0013 Prob > |z| = 0.3167 . estat overid Sargan-Hansen test of the overidentifying restrictions H0: overidentifying restrictions are valid 2-step moment functions, 2-step weighting matrix chi2(44) = 52.5931 Prob > chi2 = 0.1756 2-step moment functions, 3-step weighting matrix chi2(44) = 55.8861 Prob > chi2 = 0.1079 . estat overid, difference Sargan-Hansen (difference) test of the overidentifying restrictions H0: (additional) overidentifying restrictions are valid 2-step weighting matrix from full model | Excluding | Difference Moment conditions | chi2 df p | chi2 df p ------------------+-----------------------------+----------------------------- 1, model(fodev) | 43.5573 36 0.1808 | 9.0357 8 0.3393 2, model(fodev) | 48.2604 36 0.0832 | 4.3327 8 0.8259 3, model(fodev) | 44.0010 36 0.1690 | 8.5920 8 0.3779 4, model(fodev) | 43.5858 36 0.1800 | 9.0073 8 0.3417 5, model(fodev) | 49.9500 36 0.0610 | 2.6430 8 0.9547 6, model(fodev) | 40.2951 36 0.2859 | 12.2979 8 0.1384 7, model(fodev) | 48.0213 39 0.1524 | 4.5718 5 0.4703 8, model(level) | 35.8429 37 0.5232 | 16.7502 7 0.0191 9, model(level) | 35.8429 37 0.5232 | 16.7502 7 0.0191 model(fodev) | . -9 . | . . . model(level) | 35.8429 27 0.1188 | 16.7502 17 0.4714
Comment