I have doubts about how to embed predetermined variables in the system GMM. I read Professor Sebastian's presentation and I'm not sure if I'm doing it right. My dependent variable is the percentage of Non-Technical Losses in distribution of electricity (pntbt) or electricity theft. I suspect the endogeneity of two explanatory variable: duration of interruptions in electrical distribution (log_dec)) and electricity price (log_tarid). The other variables are predetermined (I have no evidence to think they are strictly exogenous).
Code:
Code:
xtdpdgmm pntbt L.pntbt ob_agre subnormal inadpf log_decapu log_pib log_iasc log_tarid, /// gmmiv(L.pntbt, lag(2 2) m(d) collapse) /// gmmiv(L.pntbt, lag(2 2) m(l) diff collapse) /// gmmiv(log_decapu, lag(2 2) m(d) collapse) /// gmmiv(log_decapu, lag(3 3) m(l) diff collapse) /// gmmiv(log_tarid, lag(2 2) m(d) collapse) /// gmmiv(log_tarid, lag(2 2) m(l) diff collapse) /// gmmiv(ob_agre subnormal inadpf log_pib log_iasc, lag(0 1) m(d) collapse) /// gmmiv(ob_agre subnormal inadpf log_pib log_iasc, lag(0 1) m(l) collapse) /// twostep vce(r) overid
Code:
Group variable: id Number of obs = 721 Time variable: ano Number of groups = 61 Moment conditions: linear = 27 Obs per group: min = 8 nonlinear = 0 avg = 11.81967 total = 27 max = 12 (Std. Err. adjusted for 61 clusters in id) ------------------------------------------------------------------------------ | WC-Robust pntbt | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- pntbt | L1. | .8545485 .0980974 8.71 0.000 .6622812 1.046816 | ob_agre | .0000241 .0002129 0.11 0.910 -.0003931 .0004414 subnormal | .2545236 .1650646 1.54 0.123 -.0689971 .5780442 inadpf | .0712857 .2658358 0.27 0.789 -.4497428 .5923142 log_decapu | .0202332 .0179756 1.13 0.260 -.0149983 .0554647 log_pib | .0086632 .008496 1.02 0.308 -.0079886 .025315 log_iasc | -.0108519 .0179764 -0.60 0.546 -.0460851 .0243813 log_tarid | .0352162 .0273752 1.29 0.198 -.0184383 .0888706 _cons | -.2797855 .2705651 -1.03 0.301 -.8100833 .2505124 ------------------------------------------------------------------------------
Code:
estat serial estat overid estat overid, difference
Code:
estat serial Arellano-Bond test for autocorrelation of the first-differenced residuals H0: no autocorrelation of order 1: z = -3.2453 Prob > |z| = 0.0012 H0: no autocorrelation of order 2: z = 1.5184 Prob > |z| = 0.1289 . estat overid Sargan-Hansen test of the overidentifying restrictions H0: overidentifying restrictions are valid 2-step moment functions, 2-step weighting matrix chi2(18) = 24.4723 Prob > chi2 = 0.1402 2-step moment functions, 3-step weighting matrix chi2(18) = 30.4614 Prob > chi2 = 0.0332 . estat overid, difference Sargan-Hansen (difference) test of the overidentifying restrictions H0: (additional) overidentifying restrictions are valid 2-step weighting matrix from full model | Excluding | Difference Moment conditions | chi2 df p | chi2 df p ------------------+-----------------------------+----------------------------- 1, model(diff) | 24.4438 17 0.1079 | 0.0286 1 0.8658 2, model(level) | 24.4721 17 0.1072 | 0.0002 1 0.9884 3, model(diff) | 22.0325 17 0.1835 | 2.4398 1 0.1183 4, model(level) | 24.4103 17 0.1087 | 0.0620 1 0.8033 5, model(diff) | 22.2540 17 0.1751 | 2.2183 1 0.1364 6, model(level) | 24.4709 17 0.1072 | 0.0014 1 0.9700 7, model(diff) | 15.6926 8 0.0470 | 8.7797 10 0.5531 8, model(level) | 8.6499 8 0.3727 | 15.8224 10 0.1048 model(diff) | 8.0584 5 0.1530 | 16.4139 13 0.2275 model(level) | 8.0584 5 0.1530 | 16.4139 13 0.2275
In a last post, prof. Kripfganz mentioned that
It is usually sufficient to consider the overidentification test with the 2-step weighting matrix. The two tests are asymptotically equivalent. If they differ substantially, then this would be an indication that the weighting matrix is poorly estimated.
Also, I am not sure of interpreting right the Sargan-Hansen difference test. In a general way, the (Difference-in-) Hansen tests do not reject the null hypothesis, then the instruments in all equations are valid. Or is it to be concerned that the in some equations the p values are relatively small?
Thank you so much for any comment!!!
Leave a comment: