Dear all,
I´d like to perform a Cox-regression on a categorial variable (consclustlist coded as 1, 2, 3). I therefore use stcox with xi which works fine. I get the following output:
The overall p-value of the model is p= 0.0322. I was wondering how I have to interpret the lack of significance for the individual dummy variables (_Iconsclust_2, _Iconsclust_3)?
I also performed a simple logrank test for comparison which was significant for consclustlist as well as for the individual dummy variables (_Iconsclust_2, _Iconsclust_3).
Thank´s in advance for your help & suggestions!
I´d like to perform a Cox-regression on a categorial variable (consclustlist coded as 1, 2, 3). I therefore use stcox with xi which works fine. I get the following output:
Code:
stset os_months, failure(os_cens == 1) xi: stcox i.consclustlist, vce(boot, rep(1000) seed(123)) i.consclustlist _Iconsclust_1-3 (naturally coded; _Iconsclust_1 omitted) (running stcox on estimation sample) Bootstrap replications (1000) ----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5 .................................................. 50 .................................................. 100 .................................................. 150 .................................................. 200 .................................................. 250 .................................................. 300 .................................................. 350 .................................................. 400 .................................................. 450 .................................................. 500 .................................................. 550 .................................................. 600 .................................................. 650 .................................................. 700 .................................................. 750 .................................................. 800 .................................................. 850 .................................................. 900 .................................................. 950 .................................................. 1000 Cox regression -- Breslow method for ties No. of subjects = 129 Number of obs = 129 No. of failures = 115 Time at risk = 1362.852457 Wald chi2(2) = 6.87 Log likelihood = -461.99888 Prob > chi2 = 0.0322 ------------------------------------------------------------------------------- | Observed Bootstrap Normal-based _t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval] --------------+---------------------------------------------------------------- _Iconsclust_2 | .6745748 .1558646 -1.70 0.088 .4288989 1.060976 _Iconsclust_3 | 1.430974 .4134675 1.24 0.215 .8122403 2.521036 -------------------------------------------------------------------------------
I also performed a simple logrank test for comparison which was significant for consclustlist as well as for the individual dummy variables (_Iconsclust_2, _Iconsclust_3).
Code:
. sts test consclustlist, logrank failure _d: os_cens == 1 analysis time _t: os_months Log-rank test for equality of survivor functions | Events Events consclustl~t | observed expected -------------+------------------------- 1 | 58 55.38 2 | 29 40.89 3 | 28 18.73 -------------+------------------------- Total | 115 115.00 chi2(2) = 8.26 Pr>chi2 = 0.0161 . sts test _Iconsclust_2, logrank failure _d: os_cens == 1 analysis time _t: os_months Log-rank test for equality of survivor functions | Events Events _Iconsclus~2 | observed expected -------------+------------------------- 0 | 86 74.11 1 | 29 40.89 -------------+------------------------- Total | 115 115.00 chi2(1) = 5.44 Pr>chi2 = 0.0197 . sts test _Iconsclust_3, logrank failure _d: os_cens == 1 analysis time _t: os_months Log-rank test for equality of survivor functions | Events Events _Iconsclus~3 | observed expected -------------+------------------------- 0 | 87 96.27 1 | 28 18.73 -------------+------------------------- Total | 115 115.00 chi2(1) = 5.53 Pr>chi2 = 0.0187 .
Comment