Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • sfpanel: estimation issues with translog production function using the Kumbhakar (1990) model option

    Hi,

    I have been estimating several SFA production functions (using spaniel), mostly with success (I think) but have run into an issue when I attempted to estimate two using the Kumbhakar (1990) model option. The data I have is a balanced panel dataset across 9 years with 21 hospitals.

    The model has 3 inputs to production. When I estimate the model using a Cobb-Douglas functional form, everything seems to be ok, however when I estimate a Translog function I seem to run into a problems. As you can see below there are some missing values in the regression output for "loglabor2" and "_cons" - I'm wondering if this is being caused by issues related to multicollinearity of my independent variables (they are reasonably highly correlated). Has anyone experienced this before? Any suggestions on what might be going on and what I could do about it?

    Code:
    .  sfpanel logWIES  loglabor logbeds logtotclinical, model(kumb90);
    
    initial:       Log likelihood =  -150.6797
    Iteration 0:   Log likelihood =  -150.6797  (not concave)
    Iteration 1:   Log likelihood =  255.61181  
    ...
    Iteration 11:  Log likelihood =  281.17544  
    Iteration 12:  Log likelihood =  281.17544  
    
    Time-varying parametric model (half-normal)          Number of obs =       189
    Group variable: DHB_new                           Number of groups =        21
    Time variable: year                             Obs per group: min =         9
                                                                   avg =       9.0
                                                                   max =         9
    
                                                         Prob > chi2   =    0.0000
    Log likelihood =   281.1754                          Wald chi2(3)  =   2599.10
    
    --------------------------------------------------------------------------------
           logWIES |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    ---------------+----------------------------------------------------------------
    Frontier       |
          loglabor |   .1676521    .068641     2.44   0.015     .0331183     .302186
           logbeds |   .5180803   .0457991    11.31   0.000     .4283158    .6078448
    logtotclinical |    .269625   .0394514     6.83   0.000     .1923016    .3469484
             _cons |   3.375925    .150471    22.44   0.000     3.081007    3.670843
    ---------------+----------------------------------------------------------------
    Bt             |
                 b |  -2.770481   .8797331    -3.15   0.002    -4.494727   -1.046236
                 c |   .2944086   .0978066     3.01   0.003     .1027112    .4861061
    ---------------+----------------------------------------------------------------
       /sigmau_2 |   .0427497   .0155593     2.75   0.006      .012254    .0732455
       /sigmav_2 |   .0019232   .0002125     9.05   0.000     .0015066    .0023398
    -------------+----------------------------------------------------------------
         sigma_u |   .2067601   .0376265     5.50   0.000     .1106978     .270639
         sigma_v |   .0438545   .0024233    18.10   0.000     .0388154    .0483714
          lambda |   4.714687   .0375086   125.70   0.000     4.641171    4.788202
    ------------------------------------------------------------------------------
    
    .    sfpanel logWIES  loglabor logbeds logtotclinical loglabor2 logbeds2 logtotclinical2 loglaborbeds loglaborclinical logbedsclinical, model(kumb90);
    
    initial:       Log likelihood = -421.02705
    Iteration 0:   Log likelihood = -421.02705  (not concave)
    Iteration 1:   Log likelihood =  194.65576  (not concave)
    Iteration 2:   Log likelihood =  244.05984  (not concave)
    ...
    Iteration 98:  Log likelihood =  286.44102  (not concave)
    Iteration 99:  Log likelihood =  286.44176  (not concave)
    Iteration 100: Log likelihood =  286.44248  (not concave)
    
    Time-varying parametric model (half-normal)          Number of obs =       189
    Group variable: DHB_new                           Number of groups =        21
    Time variable: year                             Obs per group: min =         9
                                                                   avg =       9.0
                                                                   max =         9
    
                                                         Prob > chi2   =    0.0000
    Log likelihood =   286.4425                          Wald chi2(7)  =  4.42e+09
    
    ----------------------------------------------------------------------------------
             logWIES |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -----------------+----------------------------------------------------------------
    Frontier         |
            loglabor |  -1.844341          .        .       .            .           .
             logbeds |   2.440416   .3303281     7.39   0.000     1.792985    3.087847
      logtotclinical |   .5751731   .1930512     2.98   0.003     .1967997    .9535464
           loglabor2 |  -2.530396          .        .       .            .           .
            logbeds2 |  -.2403704   .0544843    -4.41   0.000    -.3471578   -.1335831
     logtotclinical2 |  -.5094808   .0597611    -8.53   0.000    -.6266105   -.3923511
        loglaborbeds |   1.208227    .045438    26.59   0.000      1.11917    1.297284
    loglaborclinical |   1.362819   .0292809    46.54   0.000     1.305429    1.420208
     logbedsclinical |  -.9244875   .0393694   -23.48   0.000     -1.00165   -.8473249
               _cons |   3.778695          .        .       .            .           .
    -----------------+----------------------------------------------------------------
    Bt               |
                   b |  -.2010611   .0984202    -2.04   0.041    -.3939611   -.0081612
                   c |   .0317098     .01008     3.15   0.002     .0119533    .0514664
    -----------------+----------------------------------------------------------------
       /sigmau_2 |   .0941397   .0366863     2.57   0.010     .0222359    .1660436
       /sigmav_2 |   .0018919    .000214     8.84   0.000     .0014725    .0023112
    -------------+----------------------------------------------------------------
         sigma_u |    .306822   .0597844     5.13   0.000      .149117    .4074845
         sigma_v |   .0434958   .0024595    17.68   0.000     .0383735    .0480753
          lambda |   7.054067   .0596304   118.30   0.000     6.937194    7.170941
    ------------------------------------------------------------------------------
Working...
X