Clustered Defaults

Jin-Chuan Duan*

(First draft: November 9, 2009; Current version: March 25, 2010)

Abstract

Defaults in a credit portfolio of many obligors or in an economy populated with firms tend to occur in waves. This may simply reflect their sharing of common risk factors and/or manifest their systemic linkages via credit chains. One popular approach to characterizing defaults in a large pool of obligors is the Poisson intensity model coupled with stochastic covariates. A constraining feature of such models is that defaults of different obligors are independent events after conditioning on the covariates, which makes them ill-suited for modeling clustered defaults. Although individual default intensities under such models can be high and correlated via the stochastic covariates, joint default rates will always be zero, because the joint default probabilities are in the order of the length of time squared or higher. In this paper, we develop a hierarchical intensity model with three layers of shocks – common, group-specific and individual. When a common (or group-specific) shock occurs, all obligors (or group members) face individual default probabilities, determining whether they actually default. The joint default rates under this hierarchical structure can be high, and thus the model better captures clustered defaults. This hierarchical intensity model can be estimated using the maximum likelihood principle. Its predicted default frequency plot is used to complement the typical cumulative accuracy profile in default prediction. We implement the new model on the US corporate default/bankruptcy data and find it superior to the standard intensity model.

Keywords: Default correlation, hazard rate, maximum likelihood, Poisson process, CAP, KMV, hierarchical model, distance to default, Kullback-Leibler distance.

JEL classification code: C51, G13.

* Duan is with Risk Management Institute, National University of Singapore and the Department of Finance in the NUS Business School. E-mail: bizdjc@nus.edu.sg. The author would like to acknowledge the excellent research assistance from Tao Wang.
1 Introduction

Understanding the determinants of defaults is critical to many business and policy decisions. Credit analysis beyond single names is at the heart of credit portfolio management, and also has important regulatory policy implications. From a policy perspective, the severe credit crunch in the early phase of the recent financial crisis has particularly driven home the message that system-wide corporate defaults in a scale unprecedented is not only possible but also quite likely. Adding to this is a widely acknowledged role of credit rating agencies in fueling this financial crisis. Credit rating models used by the key rating agencies have been seriously questioned. As part of the remedial solutions, better credit analytical tools for modeling multiple obligors together are needed.

Defaults in a credit portfolio of many obligors or in an economy populated with firms tend to occur in waves. This may simply reflect their sharing of common risk factors and/or manifest their systemic linkages via credit chains. Two broad categories of modeling approaches in dealing with a credit portfolio have emerged in the literature – top-down and bottom-up. The top-down approach directly models the aggregate behavior at the portfolio level, and is intended for answering questions only concerning the overall portfolio. Examples are Arnsdorf and Halperin (2007), Cont and Minca (2007), Giesecke and Kim (2007), and Longstaff and Rajan (2007). In contrast, the bottom-up approach models individual names together by specifying their joint behavior. Such a model offers a wealth of information, but may deliver unsatisfactory performance at the aggregate level due to the built-in constraints from modeling individual obligors. Examples abound; for example, Li (2000), Shumway (2001), Andersen, et al (2003), Duffie, et al (2007), Duffie, et al (2009), and Peng and Kou (2009).

One popular approach to characterizing defaults in a large pool of obligors is the Poisson intensity model coupled with stochastic covariates, or the Cox process. Shumway (2001) and Duffie, et al (2007) are such examples. Azizpour and Giesecke (2008) reported 24 rail firm defaults in a single day on June 21, 1970, and used that to motivate their use of a self-exciting model (defaults generating more defaults) to deal with an abnormally large number of clustered defaults. Peng and Kou (2009) constructed a bottom-up model by observing that making cumulative intensity process jump, instead of jumps in the intensity process, can create bursty defaults. Duffie, et al (2009) built “frailty” into the Poisson intensity model by introducing latent variables so as to increase default clustering.

A constraining feature in the bottom-up applications of the standard Poisson intensity model is that defaults of different obligors are independent events after conditioning on the covariates, which makes them ill-suited for modeling clustered defaults. Das, et al (2007) showed by a battery of tests that the standard intensity model such as Duffie, et al (2007)
simply does not generate enough default clustering as in the observed data. Although individual default intensities under the standard intensity models can be high and correlated via the stochastic covariates, joint default rates will always be zero, because the joint default probabilities are in the order of the length of time squared or higher. This conclusion applies to all Poisson intensity models except that of Peng and Kou (2009). The Peng and Kou (2009) approach allowing jumps in the cumulative intensity process amounts to making the local intensity a Dirac delta function, and thus the joint default intensity does not vanish locally.

In this paper, we develop a hierarchical intensity model with three layers of shocks – common, group-specific and individual. When a common (or group-specific) shock occurs, all obligors (or group members) face individual default probabilities, determining whether they actually default. The joint default rates under this hierarchical structure can be high, and thus the model better captures clustered defaults. We should note that adding several Poisson processes together is not a new idea; for example, Duffie and Singleton (1999) and Lindskog and McNeil (2003) had used it to create joint credit events. Our specific hierarchical structure can, for example, be considered as an extension of Duffie and Singleton (1999) in which a two-layer hierarchical structure was employed to perform a simulation analysis. Our paper is new in the sense that we study the properties of the hierarchical structure, and more importantly this, we believe, is the first paper that has derived the likelihood function for such a hierarchical structure to make an econometric analysis possible.

We also develop an algorithm which can compute the time-varying predicted default distribution and predicted default exposure distribution for a credit portfolio under either the standard or hierarchical intensity model. Such predicted distributions have many applications; for example, one can compute the expected number of defaults for the next period. Also possible is to assign probability to different sizes of default exposure facing a credit portfolio. If coupled with the prescribed dynamics of the stochastic covariates, these predicted default distributions can be time-aggregated via Monte Carlo simulations so as to predict multiple periods ahead.

This hierarchical intensity model can be estimated using the maximum likelihood principle. We implement the model on a US corporate data set with monthly frequency over the period of January 1991 to December 2009. The data set consists of 14,870 firms with 1,388,616 firm-month observations. In this data set, 3,006 firms are financial with 280,283 firm-month observations. The total number of defaults/bankruptcies in this data set is 1,021. The analysis shows that common shock is a statistically significant component. Adding a layer to create a hierarchical structure can indeed better the performance of the Poisson intensity model.
2 A hierarchical intensity model for clustered defaults

2.1 The model

Consider a credit portfolio consisting of many obligors (firms, debt issues, or individuals). For obligor \((i,j)\), which is the \(j\)-th member of the \(i\)-the group where \(i = 1, \cdots, K\) and \(j = 1, \cdots, n_i\), we assume that its default is governed by the following process: for \(t \geq 0\),

\[
dM_{ijt} = \chi_{ijt}dN_{ct} + \zeta_{ijt}dN_{it} + dN_{ijt}.
\]

where \(N_{ct} = N_{t0} = N_{ij0} = 0\), and \(\chi_{ijt}\) (or \(\zeta_{ijt}\)) is a Bernoulli random variable taking value of 1 with a probability of \(p_{ijt}\) (or \(q_{ijt}\)) and 0 with a probability of \(1 - p_{ijt}\) (or \(1 - q_{ijt}\)). \(\chi_{ijt}\) and \(\zeta_{ijt}\) are independent of each other and also independent across different obligors. Moreover, they are independent of \(N_{ct}\), \(N_{it}\) and \(N_{ijt}\) for all \(i\)'s and \(j\)'s. The Poisson process \(N_{ct}\) is a common process shared by all obligors in a credit portfolio which is governed by intensity \(\lambda_{ct}\). The Poisson process specific to a group is \(N_{it}\) which is shared by all its members and subject to intensity \(\lambda_{it}\). The Poisson process unique to obligor \(j\) is the \(i\)-th group is \(N_{ijt}\) with intensity \(\lambda_{ijt}\). All different Poisson processes are independent of each other.

The way to understanding the above setup is as follows. \(N_{ct}\) captures the top hierarchy, say, the global event like the 2008-09 financial crisis which has severe impact beyond national boundaries. When there is no global event, obligors may still be subjected to a national event that affects many firms and individuals in that country. This is reflected in \(N_{it}\), the middle hierarchy. When there is no common credit event globally or nationally, an individual entity can still default which is captured by \(N_{ijt}\), the bottom hierarchy. Similarly, the three-layer hierarchical setup is equally applicable to modelling defaults due to national, industry-wide, and individual factors. Needless to elaborate, the three-layer model can be extended to more layers or reduced to just two or one layer. In the case of only the bottom layer, the hierarchical intensity model becomes exactly the standard intensity model for defaults such as that of Duffie, et al (2007).

When a common jump occurs, \((i, j)\)-th obligor may or may not default depending on the value of \(\chi_{ijt}\). When its value equals one, we say that obligor \((i, j)\) defaults. For a group-specific credit event, individual entities may also react differently. The obligor \((i, j)\) defaults when \(\zeta_{ijt} = 1\). As to the individual jump, an obligor defaults if its own Poisson jump occurs. Let \(\tau_{ij} = \inf(t; M_{ijt} \geq 1)\), i.e., the random default time for the \(j\)-th firm in the \(i\)-th group.

Mathematically, individual jumps will not occur concurrently even if their intensities are highly correlated. This is because the probability of a concurrent default of \(k\) obligors will have a rate equal to the length of the time interval raised to the power of \(k - 1\), which becomes negligible when \(k > 1\). Casting aside the limiting argument and fixing the time
interval at some fixed length, the clustered default probability can in principle be raised to any desired level by increasing individual default intensities. Matching clustered default this way will, however, come at the expense of overstating individual default probabilities. This is in effect the tradeoff facing the existent default intensity models in fitting the data.

In our hierarchical intensity model, however, clustered defaults can occur via two channels without disturbing individual default probabilities. The two channels are: common jump and group-specific jumps. Intuitively, defaults under the first channel will be more widespread as compared to the second one. When a common or group-specific jump happens, each obligor faces a probability of default. If we assume for simplicity that the default probability under a common credit event is same for all obligors, say p, then the number of defaulted obligors can be described by a binomial distribution. Under such an assumption, n obligors out of the survived population of size n^* ($n^* \leq \sum_{i=1}^{K} n_i$) default at the same time has the probability of $\binom{n^*}{n} p^n (1-p)^{n^*-n}$. The distribution for the number of defaults in the credit portfolio, ranging from 0 to n^*, can be easily computed with this binomial distribution. A similar calculation applies to a group-specific credit event.

Following Duffie, et al (2007), an obligor may leave the population due to factors other than default. For example, a firm can be de-listed from a securities exchange due to a merger, or an individual credit card holder decides to terminate the use of a particular credit card. A Poisson process L_{ijt} with intensity δ_{ijt} and $L_{ij0} = 0$ is used to model the exit for reasons other than default. This Poisson process is assumed to be independent of all other Poisson processes described earlier. We can define the non-default random exit time by $\phi_{ij} = \inf(t; L_{ijt} \geq 1)$. This random exit time is needed for studying the default behavior, because a default, if happens, must be prior to other forms of exit. Although we can also impose a hierarchical structure on exits not due to default, we opt for simplicity by focussing on the more important issue of clustered defaults.

Explicitly considering non-default exits, as opposed to simply ignoring them, is important more for the reason of characterizing the default behavior. Interestingly, censoring does not affect the estimation of the parameters in the default intensity functions when other forms of exits are assumed to be independent of the default process. This feature comes from the fact that the overall likelihood function can be decomposed into unrelated components, and it was utilized in Duffie, et al (2007).

We let the Poisson intensities be functions of some common state variables X_t, group-specific state variables Y_{ij} and obligor-specific factors Z_{ijt}. Although it is natural to think that the common jump intensity is influenced by common state variables, it is conceivable that some group-specific or even obligor-specific factors can affect the common jump intensity. In that case, the group-specific or obligor-specific state variable is regarded as a common state
variable. Needless to say, the individual default probability under a common jump may be
affected by the common state variables, group-specific state variables and obligor-specific
factors. Thus, we have
\[
\lambda_{ct} = F(X_{t_-}), \quad \lambda_{it} = G(X_{t_-}, Y_{it_-}), \quad \lambda_{ijt} = H(X_{t_-}, Y_{it_-}, Z_{ijt_-}),
\]
for \(i = 1, \ldots, K \) and \(j = 1, \ldots, n_i \) (2)
\[
p_{ijt} = P(X_{t_-}, Y_{it_-}, Z_{ijt_-}), \quad q_{ijt} = Q(X_{t_-}, Y_{it_-}, Z_{ijt_-}), \quad \delta_{ijt} = R(X_{t_-}, Y_{it_-}, Z_{ijt_-}),
\]
for \(i = 1, \ldots, K \) and \(j = 1, \ldots, n_i \) (3)
\[
p_{ijt}^{*} = P(X_{t_-}, Y_{it_-}, Z_{ijt_-}), \quad q_{ijt}^{*} = Q(X_{t_-}, Y_{it_-}, Z_{ijt_-}), \quad \delta_{ijt}^{*} = R(X_{t_-}, Y_{it_-}, Z_{ijt_-}),
\]
for \(i = 1, \ldots, K \) and \(j = 1, \ldots, n_i \) (4)

where \(t_- \) denote the left limit, \(F, G, H \) and \(R \) must be non-negative functions, and \(P \) and \(Q \) must be bounded between 0 and 1. Both of which can be easily accomplished with the standard modeling techniques. The hierarchical intensity model thus far comprises a family of doubly stochastic Poisson processes.

If all state variable processes have continuous sample paths, it makes no difference in
type as to using \(t_- \) or \(t \). In practice, however, one can only observe discretely sampled
data, and \(t_- \) means using the data available at time \(t - \Delta t \).

By the additivity of independent Poisson processes, the default component of the above
model viewed individually can be reduced to
\[
dM_{ijt} \overset{d}{=} \chi_{ijt}^{*} dN_{ijt}^{*} \quad (8)
\]
where \(\overset{d}{=} \) stands for distributional equivalence; \(N_{ijt}^{*} \) is a Poisson process with the intensity
equal to \(\lambda_{ct} + \lambda_{it} + \lambda_{ijt} \); and \(\chi_{ijt}^{*} \) is a Bernoulli random variable taking value of 1 with a
probability of \(p_{ijt}^{*} \) and 0 with a probability of \(1 - p_{ijt}^{*} \). Note that
\[
p_{ijt}^{*} = \frac{\lambda_{ct}}{\lambda_{ct} + \lambda_{it} + \lambda_{ijt}} p_{ijt} + \frac{\lambda_{it}}{\lambda_{ct} + \lambda_{it} + \lambda_{ijt}} q_{ijt} + \frac{\lambda_{ijt}}{\lambda_{ct} + \lambda_{it} + \lambda_{ijt}}. \quad (9)
\]

It is clear that \(\chi_{ijt}^{*} dN_{ijt}^{*} \) is also equivalent in distribution to a Poisson process with
intensity of \(p_{ijt}^{*} (\lambda_{ct} + \lambda_{it} + \lambda_{ijt}) \) with respect to the default time. Even though they are not equivalent beyond the default time, it is irrelevant as far as modeling default is concerned. Thus, if we look at an obligor individually, the hierarchical intensity model is equivalent to the Duffie, et al (2007) model. But when two or more obligors are considered jointly, the two
models are not equivalent, i.e., \((M_{ijt}, M_{klt}) \overset{d}{\neq} (\int_{0}^{t} \chi_{ijt}^{*} dN_{ijt}^{*}, \int_{0}^{t} \chi_{kls}^{*} dN_{kls}^{*})\). The distinguishing
feature of the hierarchical intensity model is therefore its ability to better capture clustered
defaults.
2.2 Predicted default frequency on the natural time scale

Perhaps, we might expect the common jump intensity to be low vis-a-vis the group-specific jump, and the group-specific jump intensity is in turn lower than individual jump intensity. But it is also plausible that common shocks actually occur more frequently, but upon occurrence, individual obligors face time-varying default probabilities p_{ijt} which sometimes causes many concurrent defaults whereas other times only generates few or no concurrent defaults. In the case of a group-specific event, the concurrent defaults will be clustered in a group and the size of the default cluster will naturally depend on the magnitude of q_{ijt} in that group.

One way to appreciate the difference between the hierarchical and standard intensity models is to compare the distributions for the number of defaults when the hierarchical intensity model (HIM) is to allow for common shocks but disable the group and individual shocks. Let U be the number of defaults out of the obligors pool over the period of $[t, t+\Delta t]$. The restricted hierarchical intensity model (rHIM) has the following distribution:

$$\text{Prob}^{rHIM}(U = 0) = e^{-\lambda_{ct}\Delta t} + (1 - e^{-\lambda_{ct}\Delta t}) \prod_{i=1}^{K} \prod_{j=1}^{n_i} (1 - p_{ijt})$$

$$\text{Prob}^{rHIM}(U = 1) = (1 - e^{-\lambda_{ct}\Delta t}) \sum_{i=1}^{K} \sum_{j=1}^{n_i} \left(p_{ijt} \prod_{m=1}^{K} \prod_{l=1}^{n_i} (1 - p_{mlt})^1_{(m,l) \neq (i,j)} \right)$$

The first part of $\text{Prob}^{rHIM}(U = 0)$ is the probability of no common shock, and hence no default occurs. The second part is the probability of the event that the common shock occurs but still no obligor defaults. This probability is in sharp contrast to the one under the standard intensity model of Duffie, et al (2007) (DSW):

$$\text{Prob}^{DSW}(U = 0) = \prod_{i=1}^{K} \prod_{j=1}^{n_i} e^{-\lambda_{ijt}\Delta t}$$

$$\text{Prob}^{DSW}(U = 1) = \sum_{i=1}^{K} \sum_{j=1}^{n_i} \left((1 - e^{-\lambda_{ijt}\Delta t}) \prod_{m=1}^{K} \prod_{l=1}^{n_i} e^{-\lambda_{mlt}\Delta t 1_{(m,l) \neq (i,j)}} \right)$$

It is evident from the above expressions, the probability of no default can be computed rather easily by the analytical expression under either model, but for one, two more defaults, the analytical expressions will become increasingly complex, and they will not be useful for
computation. For the general hierarchical intensity model, adding to the complexity is the existence of group-specific and individual shocks. Therefore, the default distributions will need to be computed numerically. The exact numerical method based on the convolution principle is described in Appendix, which is a very efficient algorithm for coming up with the predicted default distribution for either the standard or hierarchical intensity model.

The predicted default distribution for the obligors pool is time-varying. By averaging the predicted default distributions over time, however, we can devise a useful theoretical signature plot for the time series sample. It can then be compared to the observed frequency based on the natural time scale.

It is worth noting that our predicted default distribution plot is fundamentally different from the rescaled-time default distribution plot used in conjunction with the Fisher dispersion test devised by Das, et al (2007). Our signature plot is based on the original time scale, which is arguably more natural. Perhaps more importantly, the rescaled-time approach is not applicable to the hierarchical intensity model due to its lack of independence (conditional on stochastic covariates) across obligors.

Using the parameter estimates obtained later in the empirical study of the US corporate data, we can compare one version of the hierarchical intensity model with the standard intensity model, i.e, Duffie, et al (2007). In Figure 2, the bars represent the observed frequencies corresponding to different numbers of defaults over the sample period (defaults per month). The two curves correspond to the averaged predicted default distributions under two models using the parameter estimates reported in Table 1. Although two predicted distributions have some difference, both seem to predict the observed frequency well. The two models differ in the way that the hierarchical intensity model distributes weights more towards two ends.

If a variable is informative of the common shock’s arrival, then one can hope to reveal the difference between the standard and hierarchical intensity models. Figures 3a and 3b are presented for this purpose. We use the average distance-to-default for the financial firms in the sample to divide the time series sample into three equal-size groups. The bottom third corresponds to the group with the lowest average distance-to-default. We compute the observed frequency of this subsample and compare it to the averaged predicted default distribution with the average taken over the subsample. The results for the bottom third sample are presented in Figure 3a. It is evident that the predicted default distribution under the hierarchical model shifts weights towards larger numbers of defaults. This is consistent with the fact that this subsample faces a smaller market-wide distance-to-default. When the financial sector is more leveraged, we should expect to see more clustered defaults because the lending capacity of the economy shrinks.
The result for the top third subsample is opposite to that for the bottom third, and works out just as expected. Figure 3b suggests that the hierarchical model leads to a smaller number of defaults than does the standard intensity model when the market-wide distance-to-default is larger, i.e., less leveraged.

2.3 Default correlation and double default probability

Default correlation and double default probability are two informative ways of understanding a model. They are conceptually useful in examining a model’s suitability for analyzing credit portfolios. The well-known default intensity model, for example, Duffie, et al (2007), is known to yield too low a default correlation and double default probability when compared to the empirical observations. Below, we will show that the hierarchical intensity model generates higher default correlation and double default probability.

Similar to the definition for the random default time \(\tau_{ij} \) under the hierarchical model, let \(\tau^*_{ij} = \inf(t; \int_0^t \chi^*_{ijs} dN^*_{ijs} \geq 1) \) where \(N^*_{ijs} \) are assumed to be independent Poisson processes for different obligors to mimic the Duffie, et al (2007) model.

A key element to understanding intensity models is the kill rate. First, let \(a_t(ij, kl) = 1 - (1 - p_{ijt})(1 - p_{klt}) \) be the probability of two obligors fail to jointly survive with respect to the common credit shock. In other words, it is the probability that one of the two obligors fails or both fail in facing a common credit shock. Similarly, \(b_t(ij, kl) = 1 - (1 - q_{ijt})(1 - q_{klt}) \) is for the group-specific credit shock. Define

\[
\alpha_t(ij, kl) = a_t(ij, kl) \lambda_{ct} + 1_{\{i=k\}} b_t(ij, kl) \lambda_{it} + 1_{\{i \neq k\}} (q_{ijt} \lambda_{it} + q_{klt} \lambda_{kt}) + \lambda_{ijt} + \lambda_{klt} \tag{10}
\]

and

\[
\alpha^*_t(ij, kl) = (p_{ijt} + p_{klt}) \lambda_{ct} + q_{ijt} \lambda_{it} + q_{klt} \lambda_{kt} + \lambda_{ijt} + \lambda_{klt} \tag{11}
\]

It is clear that \(\alpha^*_t(ij, kl) \geq \alpha_t(ij, kl) \).

Consider two obligors in the same group – \((i, j) \) and \((i, l) \). We now compute the kill rate for determining joint survival over the interval \([t - \Delta t, t] \) for the hierarchical intensity model and the Duffie, et al (2007) model, respectively. Under the hierarchical intensity model, the kill rate for the joint survival probability is

\[
\lim_{\Delta t \to 0} \frac{1 - (1 - a_t(ij, il) \lambda_{ct} \Delta t)(1 - b_t(ij, il) \lambda_{it} \Delta t)(1 - \lambda_{ijt} \Delta t)(1 - \lambda_{ilt} \Delta t)}{\Delta t} = \alpha_t(ij, il). \tag{12}
\]

Note that the numerator of the kill rate is the probability that two obligors fail to jointly survive the interval after considering the common, group-specific and individual credit events.
together. The kill rate can in turn be used to derive the joint survival probability as follows:

\[
E_0 \left(1_{\{\tau_{ij} > t\}}1_{\{\tau_{ik} > t\}} \right) = E_0 \left\{ E_0 \left(1_{\{\tau_{ij} > t\}}1_{\{\tau_{ik} > t\}} \right| X_s, Y_{is}, Z_{ij}s, Z_{iks}; s \in [0, t] \right\} \\
= E_0 \left(e^{-\int_0^t \alpha_s(i,j,k)ds} \right).
\] (13)

If two obligors – (i, j) and (k, l) – are from different groups (i.e., \(i \neq k\)), a similar result can be derived:

\[
\lim_{\Delta t \to 0} \frac{1 - (1 - \alpha_t(i,j,k)\lambda_{ct}\Delta t)[1 - (q_{ij}\lambda_{it} + \lambda_{ij})\Delta t][1 - (q_{kl}\lambda_{kt} + \lambda_{kl})\Delta t]}{\Delta t} = \alpha_t(i,j,k). \] (14)

Under the Duffie, et al (2007) model and using the mimicking structure mentioned above, the kill rate for any two obligors is

\[
\lim_{\Delta t \to 0} \frac{1 - [1 - (p_{ij}\lambda_{ct} + q_{ij}\lambda_{it} + \lambda_{ij})\Delta t][1 - (p_{kl}\lambda_{ct} + q_{kl}\lambda_{kt} + \lambda_{kl})\Delta t]}{\Delta t} = \alpha_t^*(i,j,k). \] (15)

Double default probability and default correlation from time 0 to t for two obligors, after factoring in the censoring effect, can be computed. Their relationships to the counterparts under the Duffie, et al (2007) model are given in the following proposition.

Proposition 1. Censored double default probability and default correlation

Double default probability:

\[
E_0 \left(1_{\{\tau_{ij} \leq t \land \phi_{ij}\}}1_{\{\tau_{kl} \leq t \land \phi_{kl}\}} \right) \geq E_0 \left(1_{\{\tau_{ij}^* \leq t \land \phi_{ij}\}}1_{\{\tau_{kl}^* \leq t \land \phi_{kl}\}} \right) \] (16)

Default correlation:

\[
Corr_0 \left(1_{\{\tau_{ij} \leq t \land \phi_{ij}\}}, 1_{\{\tau_{kl} \leq t \land \phi_{kl}\}} \right) \geq Corr_0 \left(1_{\{\tau_{ij}^* \leq t \land \phi_{ij}\}}, 1_{\{\tau_{kl}^* \leq t \land \phi_{kl}\}} \right) \] (17)

Proof: see Appendix

The censored double default probability and default correlation are what one cares about because after an obligor exits for other reasons, default is no longer a relevant concept. By the above results, the censored double default probability or default correlation between two obligors under the hierarchical intensity model is always higher than that under the Duffie, et al (2007) model. Needless to say, the directional relationship still holds true when one does not consider the effect of censoring. Moreover, it can be shown that the censored double
default probability or default correlation between two obligors in the same group will be, under our hierarchical intensity model, higher than that for the two obligors in different groups but otherwise comparable.

Double default probability and default correlation as functions of time horizon can be analytically derived under either the Duffie, et al (2007) model or the hierarchical intensity model. The exact expressions under the constant parameter assumption are provided in Appendix. If parameters are time-varying, simulations can be used.

Another way of understanding the hierarchical intensity model vis-a-vis the Duffie, et al (2007) model is through a double-survival hazard rate analysis. We define a hazard rate that can be used to compute the double-survival probability in a usual way of linking the hazard rate to the survival probability. Due to other exit factors, the survival here means that neither default nor other types of exit has occurred.

The corresponding pair of hazard rates is

\[
 h_t(u; ij, kl) = \frac{-\partial E_t \left(1\{\tau_{ij} \wedge \phi_{ij} > u \} 1\{\tau_{kl} \wedge \phi_{kl} > u \} \right) / \partial u}{E_t \left(1\{\tau_{ij} \wedge \phi_{ij} > u \} 1\{\tau_{kl} \wedge \phi_{kl} > u \} \right)}
\]

\[
 = \frac{E_t \left((\alpha_u (ij, kl) + \delta_{iju} + \delta_{klu}) e^{-\int_u^t (\alpha_s (ij,kl) + \delta_{iju} + \delta_{klu}) ds} \right)}{E_t \left(e^{-\int_u^t (\alpha_s (ij,kl) + \delta_{iju} + \delta_{klu}) ds} \right)}
\]

(18)

Its counterpart under the Duffie, et al (2007) model is

\[
 h^*_t(u; ij, ik) = \frac{-\partial E_t \left(1\{\tau^*_j \wedge \phi_{ij} > u \} 1\{\tau^*_k \wedge \phi_{ik} > u \} \right) / \partial u}{E_t \left(1\{\tau^*_j \wedge \phi_{ij} > u \} 1\{\tau^*_k \wedge \phi_{ik} > u \} \right)}
\]

\[
 = \frac{E_t \left((\alpha^*_u (ij, kl) + \delta_{iju} + \delta_{klu}) e^{-\int_u^t (\alpha^*_s (ij,kl) + \delta_{iju} + \delta_{klu}) ds} \right)}{E_t \left(e^{-\int_u^t (\alpha^*_s (ij,kl) + \delta_{iju} + \delta_{klu}) ds} \right)}
\]

(19)

Recall that \(\alpha^*_s (ij, kl) \geq \alpha_s (ij, kl) \). If these rates are deterministic, then \(h^*_t(u; ij, kl) \geq h_t(u; ij, kl) \). That in turn implies that the Duffie, et al (2007) model will yield a smaller double-survival probability than the hierarchical intensity model. When the rates are stochastic, a local analysis is possible. Let \(u \) approach \(t \) which gives rise to \(h^*_t(t; ij, kl) \geq h_t(t; ij, kl) \). Thus, double survival locally is more likely under the hierarchical intensity model.

Note that \(\alpha_t (ij, kl) + \delta_{ijt} + \delta_{klt} \) is the kill rate discussed earlier except that we have adjusted for exiting due to non-default reasons. When the kill rate is constant, it is the same as the hazard rate. In our case where rates are stochastic, the kill rate is more helpful in
assessing double survival. Although we are unable to ascertain the directional relationship between two hazard rates, we are able to determine the relationship between the double survival probabilities using the kill rates. Since $\alpha_t^i(ij, kl) \geq \alpha_t(ij, kl)$ almost surely, the double survival probability, censored or not, is always higher under the hierarchical intensity model than that under the Duffie, et al (2007) model. Obviously, this conclusion applies to the case where two obligors are from different groups.

It is worth noting that the complement of double survival is not double default. A defining characteristic of the Duffie, et al (2007) model or other standard default intensity models is that its concurrent double-default rate always equals zero regardless of how high the default intensities of the two processes are. It is evident that a concurrent double default can occur with a positive rate under the hierarchical intensity model, which is through the channel of a common or group-specific shock. Interestingly, both double default and double survival are more likely under the hierarchical intensity model.

3 Estimation procedure

Let θ denote all parameters governing the X_t, Y_{it}, and Z_{ijt} for $i = 1, \cdots, K$ and $j = 1, \cdots, n_i$. The parameters governing F, G, H, R, P and Q functions are denoted by φ. The data set related to X_t, Y_{it}, and Z_{ijt} from time 1 to time T is denoted by D_T. Let I_t be a matrix with rows representing different groups and the column dimension equals the maximum number of obligors in groups. This matrix corresponds the status of all obligors. Prior to default or other forms of exit for an obligor, its corresponding entry in I_t is assigned a value of 0. If exiting by default at time t, the assigned value is switched to 1 and will remain fixed thereafter. If exiting due to other reasons, the assigned value is 2 and remains fixed from then on. In order to reflect the times at which different obligors enter the sample, we use V, a matrix matching the dimension of I_t, to capture these entry times.

The log-likelihood function can be decomposed into two parts:

$$\mathcal{L}(\theta, \varphi; D_T, I_T, V) = \mathcal{L}(\varphi; D_T, I_T, V) + \mathcal{L}(\theta; D_T)$$

Note that $\mathcal{L}(\varphi; D_T, I_T, V)$ captures the default likelihood conditional on the state variables D_T, because the processes governing defaults and other forms of exit are assumed to be directed by the values of X_t, Y_{it}, and Z_{ijt}, but not the parameters governing their dynamics. The second term $\mathcal{L}(\theta; D_T)$ is simply the log-likelihood function associated with the state variables D_T whose dynamics under the model are not affected by obligor defaults.

In contrast to the Duffie, et al (2007) approach, we must express the default likelihood function conditional on state variables cross-sectionally first, and then aggregate them over the historical period.
time. A different approach is needed because of the hierarchical default structure. Specifically,

$$\mathcal{L}(\varphi; D_T, I_T, V) = \sum_{t=2}^{T} \ln \left(A_t(\varphi; D_t, I_t, V) \right)$$ \hspace{1cm} (21)

where

$$A_t(\varphi; D_t, I_t, V) = e^{-\lambda_{c(t-1)} \Delta t} \prod_{i=1}^{K} \left(e^{-\lambda_{c(t-1)} \Delta t} \prod_{j=1}^{n_i} B_{ij t} C_{ij t}^{(1)} + (1 - e^{-\lambda_{c(t-1)} \Delta t}) \prod_{j=1}^{n_i} B_{ij t} C_{ij t}^{(2)} \right)$$

$$+ (1 - e^{-\lambda_{c(t-1)} \Delta t}) \prod_{i=1}^{K} \left(e^{-\lambda_{c(t-1)} \Delta t} \prod_{j=1}^{n_i} B_{ij t} C_{ij t}^{(3)} + (1 - e^{-\lambda_{c(t-1)} \Delta t}) \prod_{j=1}^{n_i} B_{ij t} C_{ij t}^{(4)} \right)$$ \hspace{1cm} (22)

$$B_{ij t} = 1_{V(i,j)>t-1} + 1_{V(i,j)\leq t-1} \left[1_{T_{i-1}(i,j)\neq 0} + 1_{T_{i-1}(i,j)=0} 1_{I_t(i,j)\neq 0} e^{-\delta_{ij}(t-1) \Delta t} \right]$$

$$+ 1_{I_t(i,j)=0} 1_{T_{i-1}(i,j)=0} (1 - e^{-\delta_{ij}(t-1) \Delta t})$$

$$C_{ij t}^{(1)} = 1_{V(i,j)>t-1} + 1_{V(i,j)\leq t-1} \left[1_{T_{i-1}(i,j)\neq 0} + 1_{T_{i-1}(i,j)=0} 1_{I_t(i,j)=0} e^{-\lambda_{ij}(t-1) \Delta t} \right]$$

$$+ 1_{I_t(i,j)=0} 1_{T_{i-1}(i,j)=0} (1 - e^{-\lambda_{ij}(t-1) \Delta t})$$

$$C_{ij t}^{(2)} = 1_{V(i,j)>t-1} + 1_{V(i,j)\leq t-1} \left[1_{T_{i-1}(i,j)\neq 0} + 1_{T_{i-1}(i,j)=0} 1_{I_t(i,j)\neq 0} (1 - q_{ij}(t-1)) e^{-\lambda_{ij}(t-1) \Delta t} \right]$$

$$+ 1_{I_t(i,j)=0} 1_{T_{i-1}(i,j)=0} (1 - e^{-\lambda_{ij}(t-1) \Delta t} - q_{ij}(t-1)(1 - e^{-\lambda_{ij}(t-1) \Delta t}))$$

$$C_{ij t}^{(3)} = 1_{V(i,j)>t-1} + 1_{V(i,j)\leq t-1} \left[1_{T_{i-1}(i,j)\neq 0} + 1_{T_{i-1}(i,j)=0} 1_{I_t(i,j)\neq 0} (1 - p_{ij}(t-1)) e^{-\lambda_{ij}(t-1) \Delta t} \right]$$

$$+ 1_{I_t(i,j)=0} 1_{T_{i-1}(i,j)=0} (1 - e^{-\lambda_{ij}(t-1) \Delta t} - p_{ij}(t-1)(1 - e^{-\lambda_{ij}(t-1) \Delta t}))$$

$$C_{ij t}^{(4)} = 1_{V(i,j)>t-1} + 1_{V(i,j)\leq t-1} \left[1_{T_{i-1}(i,j)\neq 0} + 1_{T_{i-1}(i,j)=0} 1_{I_t(i,j)\neq 0} (1 - p_{ij}(t-1)) \right]$$

$$+ 1_{I_t(i,j)=0} 1_{T_{i-1}(i,j)=0} (1 - q_{ij}(t-1))(1 - e^{-\lambda_{ij}(t-1) \Delta t})$$

Note that Δt is the length of one period; for example, monthly frequency corresponds to $\Delta t = 1/12$. $V(i, j)$ is used to control for some obligors that entered the sample later than others. If the application is to track a portfolio over time without adding any new obligors in the process, $V(i, j)$ can be ignored because $1_{V(i,j)\leq t-1} = 1$ and $1_{V(i,j)>t-1} = 0$.

A_t comprises two terms with the first dealing with the event in which the common shock did not occur over the time period $[t-1, t]$, which has the probability of $e^{-\lambda_{c(t-1)} \Delta t}$. The
second term is for the event in which the common shock did occur with a probability of \(1 - e^{-\lambda_{ij(t-1)}\Delta t} \).

Conditional on the event of non-occurrence of the common shock, group-specific shocks can either occur or not. The first term inside the first term of \(A_t \) is for the non-occurrence of that group-specific shock whereas the second term is for the occurrence of that group-specific shock. Their respective probabilities follow the same principle as for the common event. Similarly, the two terms inside the second term of \(A_t \) deal with the two possible scenarios for the group-specific shocks.

Under each of four possible combinations of common and group-specific events, we are able to figure out the appropriate probability of the joint default-exit pattern of all obligors in the sample. In the case of \(B_{ijt}C_{ijt}^{(1)} \), neither the common nor group-specific shock occurred, the probability of no default or exit over \([t-1, t]\) for the \((i, j)\)-th obligor is governed by its individual default and other exit intensities which equals \(e^{-\lambda_{ij(t-1)} + \delta_{ij(t-1)}\Delta t} \). Likewise, the probability for default or other exit follows from the specification of the hierarchical intensity model.

\(B_{ijt}C_{ijt}^{(2)} \) is the term specifically for the combination of no common shock but with a group-specific shock. The probability for an obligor not to default or exit for other reasons naturally becomes \((1 - q_{ij(t-1)})e^{-\lambda_{ij(t-1)} + \delta_{ij(t-1)}\Delta t} \) where the first item is the probability of no default even when a group-specific shock has already occurred. The other two items simply reflect the non-occurrence of the obligor-specific default or exit for other reasons. If a particular obligor defaults, its probability must be the sum of its default probability due to the group-specific shock, i.e., \(q_{ij(t-1)} \), and its own shock, i.e., \(1 - e^{-\lambda_{ij(t-1)}\Delta t} \), minus the probability of joint occurrence to avoid double counting. Conditional on the event that the common shock did not occur, a group-specific shock could either occur or not. For a particular default-exit pattern, the appropriate probability will thus be the sum of the two terms inside the first term of \(A_t \).

The idea behind the term \(B_{ijt}C_{ijt}^{(3)} \) is similar to that for \(B_{ijt}C_{ijt}^{(2)} \). For the term \(B_{ijt}C_{ijt}^{(4)} \), we consider the situation in which both the common and some group-specific shocks have occurred. Thus, observing a particular obligor which neither defaulted nor exited for other reasons over \([t-1, t]\), the probability must equal \((1 - p_{ij(t-1)})(1 - q_{ij(t-1)})e^{-\lambda_{ij(t-1)} + \delta_{ij(t-1)}\Delta t} \). For a defaulted obligor, its probability will be the sum of three possible causes – common shock, group-specific shock or individual shock. Since all three shocks could have all occurred over \([t-1, t]\), we must adjust for double and triple counting, and thus have the result of \(p_{ij(t-1)} + q_{ij(t-1)} + (1 - e^{-\lambda_{ij(t-1)}\Delta t}) - p_{ij(t-1)}q_{ij(t-1)} - p_{ij(t-1)}(1 - e^{-\lambda_{ij(t-1)}\Delta t}) - q_{ij(t-1)}(1 - e^{-\lambda_{ij(t-1)}\Delta t}) + p_{ij(t-1)}q_{ij(t-1)}(1 - e^{-\lambda_{ij(t-1)}\Delta t}) \). The remaining term in \(B_{ijt}C_{ijt}^{(4)} \) is for the probability of exiting for other reasons, its expression is straightforward.
It is fairly easy to see that the above result contains that of Duffie, et al (2007) as a special case. When the common and group-specific intensities are set to zero, \(A_t \) becomes \(\prod_{i=1}^{K} \prod_{j=1}^{n_i} B_{ijt} C_{ijt}^{(1)} \). In the case of Duffie, et al (2007), one first multiply over time for each obligor and then over obligors. In our expression, we first multiply over obligors and then over time. Note that \((1 - e^{-\lambda_{ij(t-1)\Delta t}}) \) is more accurate because the default intensity model is likely applied on data that are of monthly, quarterly or yearly frequency. In this more accurate form, the only assumption is that the covariates do not change over the time period \([t - 1, t]\).

The intensity functions for defaults and that for other forms of exit are expected to be governed by different parameters. When there are no parametric restrictions linking two sets of parameters together, the following decomposed likelihood function can be very useful in numerical optimization:

\[
A_t(\varphi; D_t, I_t, V) = \left(\prod_{i=1}^{K} \prod_{j=1}^{n_i} B_{ijt} \right) \left\{ e^{-\lambda_{\varphi(t-1)\Delta t}} \prod_{i=1}^{K} \left(e^{-\lambda_{I(t-1)\Delta t}} \prod_{j=1}^{n_i} C_{ijt}^{(1)} + (1 - e^{-\lambda_{I(t-1)\Delta t}}) \prod_{j=1}^{n_i} C_{ijt}^{(2)} \right) \right. \\
+ \left(1 - e^{-\lambda_{\varphi(t-1)\Delta t}}\right) \prod_{i=1}^{K} \left(e^{-\lambda_{I(t-1)\Delta t}} \prod_{j=1}^{n_i} C_{ijt}^{(3)} + (1 - e^{-\lambda_{I(t-1)\Delta t}}) \prod_{j=1}^{n_i} C_{ijt}^{(4)} \right) \right\}
\]

(23)

If we divide the parameter set \(\varphi \) into \(\varphi_B \) and \(\varphi_C \), the term \(\prod_{i=1}^{K} \prod_{j=1}^{n_i} B_{ijt} \) only contains \(\varphi_B \), and the remaining terms are functions of \(\varphi_C \). This decomposition will reduce the effective dimension in numerically maximizing the log-likelihood function, because \(\varphi_B \) and \(\varphi_C \) can be optimized separately.

The log-likelihood function associated with the state variables, i.e, \(\mathcal{L}(\theta; D_T) \) depends on the dynamic model adopted for the state variables. Duffie, et al (2007) employed the vector autoregression model for the state variables. As discussed earlier, the state variable dynamics do not affect the default process estimation. Unless one is interested in default prediction beyond one period ahead, it is unnecessary to specify the state variable dynamics. Since the objective of this paper is to introduce a new approach to default modeling, we will focus on the critical difference in the default structures and avoid the complication caused by the choice of state variable dynamics.

In order to implement the model, one must specify the the intensity functions. In this paper, we let \(F(x_1, x_2, \ldots, x_n) = \ln (1 + e^{a_0 + a_1 x_1 + a_2 x_2 + \cdots + a_n x_n}) \). Note that logarithmic odds ratio for a shock to occur becomes linear in \(x_1, x_2, \ldots, x_n \), which happens to be a specification used in logistic regression. We specify functions \(G \) and \(H \) in the same form but allow for different coefficients. Note that Duffie, et al (2007) adopted a different
specification which makes the intensity function exponential-linear in x_1, x_2, \cdots, x_n. Our empirical analysis reported later suggests that their choice is a superior specification for implementing the standard Poisson intensity model. But the intensity function that implies a log-linear odds ratio is a better implementation choice for the hierarchical intensity model. The default probability function corresponding to the common is specified as $P(x_1, x_2, \cdots, x_n) = 1/(1 + e^{-b_0 - b_1 x_1 - b_2 x_2 - \cdots - b_n x_n})$. The default probability functions corresponding the group-specific shocks are similarly specified. Needless to say, the coefficients can be different. Such specification also makes the logarithmic odds ratio linear in x_1, x_2, \cdots, x_n, and thus consistent with our intensity function specifications.

4 Empirical analysis

4.1 Data

The data set used to compare the hierarchical and standard intensity models is a sample of US firms over the period of 1991-2009. The data frequency is monthly with the accounting data from the Compustat quarterly and annual database. The reported figures are lagged for three months to reflect the fact that the accounting figures are typically released a couple months after the period covered. The stock market data (stock prices, shares outstanding, and market index returns) are from the CRSP monthly file. For the default/bankruptcy data, we take from the CRSP file the de-listing information and couple them with the default data obtained from the Bloomberg CACS function. Following Shumway (2001), the firms that filed for any type of bankruptcy within 5 years of de-listing are considered bankrupt. Firms may exit the sample due to reasons other than default or bankruptcy, and they are lumped together as other exits. The firms with less than one year’s data over the sample period are removed. The interest rates are taken from the US Federal Reserve. While Duffie, et al (2007) restricted their sample to Moody’s “Industrial” category, we include all firms in the data base.

After accounting for missing values, there are 14,870 firms with 1,388,616 firm-month observations. Among them, 3,006 companies are financial (SIC code between 6000 and 6999) with 280,283 firm-month observations. The total number of defaults/bankruptcies in this sample is 1,021. The time pattern of default over the sample period is shown in Figure 1. It is evident from this plot that default surged after the internet bubble burst in 2001, and again it surged during the 2008-09 financial crisis. The 2008-09 financial crisis was without any doubt a much more serious event than the burst of the internet bubble. But its impact on defaults seemed to be less prominent, however. It is in a away understandable because of massive governmental interventions. This suggests that we may need to incorporate an intervention dummy variable in estimating models on data covering this unusual period.
We follow Duffie, et al (2007) to use four covariates: trailing one-year S&P 500 index return, three-month Treasury bill rate, firm’s trailing one-year return, and firm’s distance-to-default in accordance with Merton’s model. Merton’s model is typically implemented with a KMV assumption on the debt maturity and size. As described in Crosbie and Bohn (2002), the KMV assumption sets firm’s debt maturity to one year and size to the sum of short-term debt and 50% of long-term debt. In the literature, this KMV assumption is typically adopted only for non-financial firms, because a financial company such as AIG has significantly higher liabilities that are classified as neither short-term nor long-term debt. The KMV debt formula would appear to be unreasonable for financial firms. For example, as of December 31, 2007, AIG’s total equity market capitalization was $147.863 billion. The debt size using the KMV formula would become $92.279 billion (much smaller than equity). AIG’s other liabilities stood at $799.445 billion, but it would be completely left out of the KMV debt.

Since we have included financial firms in our sample, we need to devise a way to handle other liabilities (total liabilities minus short-term and long-term debts). Specifically, we assign a firm-specific fraction of other liabilities and add the result to the KMV debt. We then apply the maximum likelihood estimation method developed by Duan (1994, 2000) to estimate this unknown fraction along with the asset return’s unknown mean and standard deviation. We estimate such a liability-adjustment factor for both financial and non-financial firms.

In a recent article, Wang (2009) showed in the context of the Duffie, et al (2007) model that using the cross-sectional average of firm’s distance-to-default can improve the model’s performance. When the average is low, individual firms are more likely to default. Since distance-to-default can be understood as an inverse of a firm’s standardized leverage, Wang’s finding suggests that a higher economy-wide leverage leads to higher individual defaults above and beyond the impact of their own leverages. Because we are able to come up with suitable distances-to-default for financial firms, we can also zero in on the financial sector average of distance-to-default. We will show later that the average distance-to-default of financial firms plays a better role, as compared to the economy-wide average, in determining the arrival of the common shock.

4.2 Empirical findings

The focus of our empirical analysis is on the default dynamics. We do not attempt to prescribe a time series specification for the covariates, for which Duffie, et al (2007) have already proposed one. As shown earlier, the likelihood function is decomposable in a way that the default intensity structure can be estimated by treating all covariates as exogenous variables. Furthermore, the likelihood function can be decomposed in a way that the default
dynamics can be estimated without knowing the exact nature of exit that occurs for reasons other than default. These two facts when taken together allow us to just focus on the default dynamics.

The specification for the intensity functions has been discussed in the end of Section 3, which basically makes the logarithmic odds ratio linear in covariates. For the Duffie, et al (2007) model, we also consider their original specification for the comparison purpose. Their original exponential-linear form in covariates will be referred to as DSW-exp whereas the form with the logarithmic odds ratio being linear in covariates will be referred to as DSW-log.

The results for the standard intensity model, using the same specification for the intensity function and the same set of covariates as in Duffie, et al (2007), are reported under DSW-exp in Table 1. Note that we have added an intervention dummy variable, referred to as “AIG Dummy”, whose value is set to 1 from September 2008 onwards to reflect the US government’s bailing out AIG. AIG Dummy is set to 1 all the way to the end of our sample, which is December 2009. Our results confirms their finding that these variables are all significant and their signs are also in agreement with those reported in Duffie, et al (2007). When we change the functional form of the intensity function to the one that the logarithmic odds ratio is linear in covariates, i.e., DSW-log, the results are largely the same, but the log-likelihood functional value drops somewhat, indicating that the original specification in Duffie, et al (2007), is superior.

For the hierarchial model, however, the exponential-linear is not as desirable. To conserve space, we only report the results using the intensity function specification under which the logarithmic odds ratio is linear in covariates (denoted by HIM-log). In the common shock intensity function, we use the average distance-to-default as a variable. Two types of average are considered – averaging over all firms and averaging over financial firms only. The individual default probability function corresponding to the common shock occurs, i.e., \(p \) function, is specified as a function of individual distance-to-default. Note that we add the intervention dummy variable to the common shock intensity function as well as to the individual shock intensity function.

The results reported in Table 1 under HIM-log show that the parameters define the common shock are significant. The likelihood ratio test cannot be straightforwardly applied, however, because there are two unidentified nuisance parameters in \(p \) function under the null hypothesis of no common shock. The likelihood ratio test statistic between HIM-log and DSW-log (using the average financial DTD), for example, equals 290.2 (i.e., \(2 \times (5887.4 - 5742.3) \)), which is so large that any adjustment to the critical value will not have any material effect in changing the conclusion. In fact, we have conducted a Monte Carlo analysis with 1,000 runs to determine the appropriate 5% cutoff value for the likelihood ratio statistic.
For testing HIM-log vs. DSW-log in Table 1, the critical value turns out to be 7.08 which is as expected less than 11.07, the χ^2 value for the 5% test corresponding to five degrees of freedom.\footnote{1}

The results for HIM-log show that using the average distance-to-default of financial firms works better than using the average of all firms. The sign of the coefficient turns out to be as expected. This result is interesting but not too surprising, because a higher overall leverage level in the financial sector (i.e., a lower average DTD of financial firms) is strongly indicative of the overall economy in distress (or having a lower lending capacity). A lower average DTD increases the chance of a common shock, which in turn causes clustered defaults. The variable used in p function is the firm’s own distance-to-default. This variable is highly significant, meaning that individual firm’s response to a common shock depends on its own leverage. The higher is the leverage (a lower distance-to-default), the more likely the firm defaults upon experiencing a common shock.

The default signature plots discussed earlier are based on the parameters reported in Table 1. For the hierarchical intensity model, the plot is based on HIM-log using the financial firms’ average distance-to-default. In the case of standard intensity model, we use DSW-log. The structural difference between two modeling approaches is evident in Figures 3a and 3b, when periods are grouped according to the financial firms’ average distance-to-default.

Cumulative accuracy profile (CAP), also known as power curve, is often employed to determine the performance of a rating/default prediction model. CAP is only concerned with rankings and totally ignores the degrees of riskiness. To produce a CAP, we first line up the obligors ranging from most risky to least risky. Then, set a percentage and take a group of most risky obligors corresponding to this chosen percentage. Finally, identify defaulted obligors in this group and compute the percentage represented by these defaulted ones in the population of all defaulted obligors. CAP is a plot that relates the percentage among defaulted obligors to the percentage among the ranked obligors. In a large sample, the CAP corresponding to a perfect risk ranking model should quickly rise to one and level at one. In contrast, a completely uninformative risk ranking model will have the CAP plot as a line with the slope equal to one. Figure 4 presents the CAPs corresponding to the standard and hierarchical intensity models. It is clear that the two models have highly similar risk ranking performance even though their predicted default distributions differ.

\footnote{1}We simulated individual defaults conditional on the observed covariates over the sample period. Simulation was based on the DSW-log model with the maximum likelihood estimates presented in Table 1. Since we didn’t estimate the intensity function due to other forms of exit, the simulation had assumed away other forms of exit. When a simulated path showed no exit prior to a firm’s actual default or other exit, we needed to generate values for the covariates for the periods that the relevant data did not exist. In which cases, we bootstrapped from their values prior to the default (or other forms of exit). For each simulated sample, we estimated the DSW-log and HIM-log and computed the corresponding likelihood ratio statistic.
Therefore, CAP alone is uninformative in distinguishing these two models even though their likelihood values are dramatically different. This is not at all surprising because CAP does not distinguish, say, two defaults occurring at the same month or different months.

The two models are actually quite different if we compare their time-varying predicted default distributions. The Kullback-Leibler (KL) distance is a popular way of measuring the distance between two distribution functions. We compute the KL distance at time t using the following formula:

$$KL_t = \sum_{i=0}^{\infty} \ln \left(\frac{p_t^{HIM}(i)}{p_t^{DSW}(i)} \right) p_t^{HIM}(i).$$

(24)

The KL distance is non-negative, and its minimum value is zero which is attainable when two distributions are identical. However, the KL distance is not a typical distance measure because it is asymmetrical. We provide a time series plot of the KL distance in Figure 5. To get a sense on what the magnitude of the KL distance means, we note that the KL distance of a normal distribution with mean 0 and standard deviation σ to the standard normal distribution equals $\ln(\sigma) + \frac{1-\sigma^2}{2\sigma^2}$. When $\sigma = 0.65$, the KL distance is 25%. But for $\sigma = 1.85$, the KL distance is 26%. The plot indicates that the two predicted default distributions are sometimes close, but at other times they can be quite different. The difference peaked in March 2009 at 27%. The KL distance is plotted alongside the average distance-to-default of financial firms. Their relationship appears to be nonlinear, reflecting the fact that we have previously learned from Figures 3a and 3b; that is, two predicted default distributions (averaged over periods with similar characteristics) differ more for either high and low values of average distance-to-default.

5 Conclusion

In this article, a hierarchical intensity model is proposed for modeling clustered defaults. This model vis-a-vis the standard intensity model exhibits a feature that clustered defaults can be generated through a common or group-specific shock. In this exploratory study, we have only implemented a version with common and individual shocks. The covariate that drives the arrival of the common shock is the average distance-to-default of all financial firms. Other variables may also be informative and can be used to further separate the performances of the hierarchical and standard intensity models. In addition, group-specific shocks can be added to the model to improve performance, and empirical exploration in this direction may prove to be productive.

The hierarchical intensity model offers an interesting theoretical feature. The multiple-default probability becomes proportional to the length of the measuring time interval. In
contrast, the standard intensity model will have such probability proportional to the time length raised to the power equal to the number of concurrent defaults. This feature should be of particular interest when one estimates the model with one data frequency, say monthly, but want to consider joint defaults over, say, a week.

References

6 Appendix

6.1 Predicted default distributions

A. The standard intensity model

1. At time $t - \Delta t$, define the distribution for the cumulative number of defaults, after considering up to and including the (i, j)-th obligor, by $p_{ij}^t(k)$ for $k = 0, 1, \ldots$. Obviously, $p_{ij}^t(0) = e^{-\lambda_{ij}(t-\Delta t)\Delta t}$, $p_{ij}^t(1) = 1 - e^{-\lambda_{ij}(t-\Delta t)\Delta t}$, and $p_{ij}^t(k) = 0$ for $k = 2, \ldots$.

2. Perform convolution of $p_{ij}^t(k)$ with the next obligor in the pool, i.e., the $(i, j+1)$-th obligor. Its default distribution is $q_{i}^{j+1}(0) = e^{-\lambda_{i}(j+1)(t-\Delta t)\Delta t}$ and $q_{i}^{j+1}(1) = 1 - e^{-\lambda_{i}(j+1)(t-\Delta t)\Delta t}$. Note that instead of tracking the cumulative number of defaults that have negligible probabilities, one can truncate the cumulative default distribution at some k^* beyond which the probability is, say, lower than 10^{-8}. The truncated default distribution needs to be normalized so as to sum up to 1. The convolution calculation is illustrated in the following table:

<table>
<thead>
<tr>
<th>k =</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>\ldots</th>
<th>k^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{ij}^t(0)$</td>
<td>$p_{ij}^t(1)$</td>
<td>$p_{ij}^t(2)$</td>
<td>\ldots</td>
<td>$p_{ij}^t(k^*)$</td>
<td></td>
</tr>
<tr>
<td>$q_{i}^{j+1}(0)p_{ij}^t(0)$</td>
<td>$q_{i}^{j+1}(0)p_{ij}^t(1)$</td>
<td>$q_{i}^{j+1}(0)p_{ij}^t(2)$</td>
<td>\ldots</td>
<td>$q_{i}^{j+1}(0)p_{ij}^t(k^*)$</td>
<td></td>
</tr>
<tr>
<td>Row 1</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$q_{i}^{j+1}(1)p_{ij}^t(0)$</td>
<td>$q_{i}^{j+1}(1)p_{ij}^t(1)$</td>
<td>$q_{i}^{j+1}(1)p_{ij}^t(2)$</td>
<td>\ldots</td>
<td>$q_{i}^{j+1}(1)p_{ij}^t(k^* - 1)$</td>
<td></td>
</tr>
<tr>
<td>Row 2</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

The new convoluted cumulative default distribution, i.e., $p_{ij}^{t(j+1)}(k)$, is the sum across Rows 1 and 2 in the above table.

3. Repeat the above convolution calculation for all obligors remaining in the pool at time $t - \Delta t$.

4. Denote the cumulative default distribution for the entire pool at time t by $\hat{p}_t(k)$. Average the adjusted default distributions over time to obtain $\hat{P}(k) = \frac{1}{N} \sum_{j=1}^{N} \hat{P}_j\Delta t(k)$ for $k = 0, 1, 2, \cdots$ where N is the number of periods of length Δt. One can also restrict the average to a subset of time periods defined by the values of some covariate.

B. The hierarchical intensity model

1. At time $t - \Delta t$, assume that the common shock has occurred and perform the convolution calculations similar to that described in the preceding subsection, but use the default probability $p_{ij(t-\Delta t)}$ in the hierarchical intensity model. Repeat for all obligors remaining in the pool at time $t - \Delta t$, and denote the conditional cumulative default distribution by $a_t(0), a_t(1), a_t(2), \cdots$. Then, factoring in the fact that this is a conditional distribution and zero default can also occur when
there is no common shock, the cumulative default distribution due to the common shock thus becomes

\[\hat{p}_{ct}(0) = e^{-\lambda_c(t-\Delta t)\Delta t} + (1 - e^{-\lambda_c(t-\Delta t)\Delta t})a_t(0) \]

\[\hat{p}_{ct}(k) = (1 - e^{-\lambda_c(t-\Delta t)\Delta t})a_t(k) \quad \text{for } k = 1, 2, \ldots. \]

2. Assume that the group-specific shock has occurred and perform similar convolution calculations using the default probability \(q_{ij(t-\Delta t)} \). Repeat for all obligors remaining in the group at time \(t - \Delta t \), and denote the conditional cumulative default distribution by \(b_{it}(0), b_{it}(1), b_{it}(2), \ldots \). Then, factoring in the fact that this is a conditional distribution and zero default can also occur when there is no group-specific shock, the default distribution due to the group-specific shock becomes

\[\hat{p}_{it}(0) = e^{-\lambda_i(t-\Delta t)\Delta t} + (1 - e^{-\lambda_i(t-\Delta t)\Delta t})b_{it}(0) \]

\[\hat{p}_{it}(k) = (1 - e^{-\lambda_i(t-\Delta t)\Delta t})b_{it}(k) \quad \text{for } k = 1, 2, \ldots. \]

3. Perform the convolution calculation of \(\hat{p}_{ct}(k) \) with \(\hat{p}_{it}(k) \) to yield the default distribution for the sum of the common and group 1-specific shocks. Note that \(\hat{p}_{it}(k) \) may take non-zero value for \(k \geq 2 \), this convolution calculation needs more than two rows. Suppose \(\hat{p}_{ct}(k) \) with \(\hat{p}_{it}(k) \) are truncated at \(k^* \) and \(k^{**} \), respectively, beyond which the probabilities are less than \(10^{-8} \). We need to construct a table similar to that in the preceding subsection, but with \(k^{**} \) rows. After group 1, continue the convolution to group 2 with the default distribution of \(\hat{p}_{2t}(k) \). Repeat convolutions until all groups are exhausted.

4. Perform convolution of the default distribution for the cumulative sum of common and group-specific shocks with the individual default distributions. This can be done one obligor at a time until all are exhausted. The individual default probabilities are in the form of \(1 - e^{-\lambda_i(t-\Delta t)\Delta t} \) which only needs two rows in the convolution calculation. Denote the final default distribution, due to three types of shocks, by \(\hat{p}_t(0), \hat{p}_t(1), \hat{p}_t(2), \ldots \).

5. Average the adjusted default distributions over time to obtain \(\hat{P}(k) = \frac{1}{N} \sum_{j=1}^{N} \hat{p}_{j \Delta t}(k) \) for \(k = 0, 1, 2, \ldots \) where \(N \) is the number of periods of length \(\Delta t \). Again, one can restrict the average to a subset of time periods defined by the values of some covariate.

6.2 Proof of Proposition 1

First, consider

\[
E_0 \left(1_{\{\tau_{ij} \leq t \wedge \phi_{ij}\}} 1_{\{\tau_{kl} \leq t \wedge \phi_{kl}\}} \right) \\
= 1 + E_0 \left(1_{\{\tau_{ij} > t \wedge \phi_{ij}\}} 1_{\{\tau_{kl} > t \wedge \phi_{kl}\}} \right) - E_0 \left(1_{\{\tau_{ij} > t \wedge \phi_{ij}\}} \right) - E_0 \left(1_{\{\tau_{kl} > t \wedge \phi_{kl}\}} \right)
\]

(25)
The second term in the above expression can be further developed into

\[
E_0 \left(1_{\{\tau_{ij} > t \land \phi_{kl} \}} \right) 1_{\{\tau_{kl} > t \land \phi_{kl} \}} \\
= E_0 \left(1_{\{\phi_{ij} \leq \phi_{kl} \}} 1_{\{\tau_{ij} > t \land \phi_{ij} \}} 1_{\{\tau_{kl} > t \land \phi_{kl} \}} \right) + E_0 \left(1_{\{\phi_{ij} > \phi_{kl} \}} 1_{\{\tau_{ij} > t \land \phi_{ij} \}} 1_{\{\tau_{kl} > t \land \phi_{kl} \}} \right) \\
= E_0 \left[1_{\{\phi_{ij} \leq \phi_{kl} \}} E_0 \left(1_{\{\tau_{ij} > t \land \phi_{ij} \}} 1_{\{\tau_{kl} > t \land \phi_{kl} \}} \right) \phi_{ij} \phi_{kl} \right] + E_0 \left[1_{\{\phi_{ij} > \phi_{kl} \}} E_0 \left(1_{\{\tau_{ij} > t \land \phi_{ij} \}} 1_{\{\tau_{kl} > t \land \phi_{kl} \}} \right) \phi_{ij} \phi_{kl} \right] \\
= E_0 \left[1_{\{\phi_{ij} \leq \phi_{kl} \}} E_0 \left(e^{-\int_{0}^{t \land \phi_{ij}} \alpha_s(ij,kl)ds - f_{t \land \phi_{ij}} \alpha(ij,kl)(p_{kl} \lambda_c + q_{kl} \lambda_k + \lambda_{kl})ds} \right) \right] + E_0 \left[1_{\{\phi_{ij} > \phi_{kl} \}} E_0 \left(e^{-\int_{0}^{t \land \phi_{kl}} \alpha_s(ij,kl)ds - f_{t \land \phi_{kl}} \alpha(ij,kl)(p_{kl} \lambda_c + q_{kl} \lambda_k + \lambda_{kl})ds} \right) \right] \\
\geq E_0 \left[1_{\{\phi_{ij} \leq \phi_{kl} \}} E_0 \left(e^{-\int_{0}^{t \land \phi_{ij}} \alpha_s^*(ij,kl)ds - f_{t \land \phi_{ij}} \alpha^*(ij,kl)(p_{kl} \lambda_c + q_{kl} \lambda_k + \lambda_{kl})ds} \right) \right] + E_0 \left[1_{\{\phi_{ij} > \phi_{kl} \}} E_0 \left(e^{-\int_{0}^{t \land \phi_{kl}} \alpha_s^*(ij,kl)ds - f_{t \land \phi_{kl}} \alpha^*(ij,kl)(p_{kl} \lambda_c + q_{kl} \lambda_k + \lambda_{kl})ds} \right) \right] \\
= E_0 \left(1_{\{\tau_{ij}^* > t \land \phi_{ij} \}} 1_{\{\tau_{kl}^* > t \land \phi_{kl} \}} \right) \\
\tag{26}
\]

The inequality is due to the fact that \(\alpha_s^*(ij, kl) \geq \alpha_s(ij, kl) \).

Therefore,

\[
E_0 \left(1_{\{\tau_{ij} > t \land \phi_{ij} \}} 1_{\{\tau_{kl} > t \land \phi_{kl} \}} \right) \geq E_0 \left(1_{\{\tau_{ij}^* > t \land \phi_{ij} \}} 1_{\{\tau_{kl}^* > t \land \phi_{kl} \}} \right)
\]

because all terms involving only \(\tau_{ij} \) (or \(\tau_{kl} \)) in the right-hand side of equation (25) can be substituted with \(\tau_{ij}^* \) (or \(\tau_{kl}^* \)), a result due to our construction where an obligor individually behaves the same way under two modelling approaches.

Recall the definition for default correlation:

\[
Corr_0 \left(1_{\{\tau_{ij} \leq t \land \phi_{ij} \}}, 1_{\{\tau_{kl} \leq t \land \phi_{kl} \}} \right) = \frac{E_0 \left(1_{\{\tau_{ij} \leq t \land \phi_{ij} \}} 1_{\{\tau_{kl} \leq t \land \phi_{kl} \}} \right) - E_0 \left(1_{\{\tau_{ij} \leq t \land \phi_{ij} \}} \right) E_0 \left(1_{\{\tau_{kl} \leq t \land \phi_{kl} \}} \right)}{\sqrt{E_0 \left(1_{\{\tau_{ij} \leq t \land \phi_{ij} \}} \right) - \left(E_0 \left(1_{\{\tau_{ij} \leq t \land \phi_{ij} \}} \right) \right)^2} \sqrt{E_0 \left(1_{\{\tau_{kl} \leq t \land \phi_{kl} \}} \right) - \left(E_0 \left(1_{\{\tau_{kl} \leq t \land \phi_{kl} \}} \right) \right)^2}}
\]

Apart from \(E_0 \left(1_{\{\tau_{ij} \leq t \land \phi_{ij} \}} 1_{\{\tau_{kl} \leq t \land \phi_{kl} \}} \right) \), all other terms are the same when \(\tau_{ij} \) (or \(\tau_{kl} \)) is replaced with \(\tau_{ij}^* \) (or \(\tau_{kl}^* \)). Thus, the directional relation follows.
6.3 Formulas for the components in the censored double default probability and default correlation under the constant parameter assumption

Impose constant parameters and compute the components needed in equation (25). Note that $E_0 \left(1_{\{\tau_{ij} \leq t \wedge \phi_{ij} \}} \right) = 1 - E_0 \left(1_{\{\tau_{ij} > t \wedge \phi_{ij} \}} \right)$. First,

$$
E_0 \left(1_{\{\tau_{ij} > t \wedge \phi_{ij} \}} \right) = E_0 \left(e^{-\left(p_{ij} \lambda_c + q_{ij} \lambda_i + \lambda_{ij} \right) \left(t \wedge \phi_{ij} \right)} \right) = \frac{\delta_{ij}}{p_{ij} \lambda_c + q_{ij} \lambda_i + \lambda_{ij} + \delta_{ij}} + \frac{p_{ij} \lambda_c + q_{ij} \lambda_i + \lambda_{ij} + \delta_{ij}}{p_{ij} \lambda_c + q_{ij} \lambda_i + \lambda_{ij} + \delta_{ij}} e^{-\left(p_{ij} \lambda_c + q_{ij} \lambda_i + \lambda_{ij} + \delta_{ij} \right)\left(t \wedge \phi_{ij} \right)}
$$

Next and by a similar argument,

$$
E_0 \left(1_{\{\tau_{kl} > t \wedge \phi_{kl} \}} \right) = \frac{\delta_{kl}}{p_{kl} \lambda_c + q_{kl} \lambda_k + \lambda_{kl} + \delta_{kl}} + \frac{p_{kl} \lambda_c + q_{kl} \lambda_k + \lambda_{kl} + \delta_{kl}}{p_{kl} \lambda_c + q_{kl} \lambda_k + \lambda_{kl} + \delta_{kl}} e^{-\left(p_{kl} \lambda_c + q_{kl} \lambda_k + \lambda_{kl} + \delta_{kl} \right)\left(t \wedge \phi_{kl} \right)}
$$

Thus, the remaining term to be computed is $E_0 \left(1_{\{\tau_{ij} > t \wedge \phi_{ij} \}} 1_{\{\tau_{kl} > t \wedge \phi_{kl} \}} \right)$, which in turn comprises the two terms as shown in equation (26).

$$
E_0 \left[1_{\{\phi_{ij} \leq \phi_{kl} \}} E_0 \left(e^{-\int_0^{t \wedge \phi_{ij}} \alpha(ij,kl) ds - \int_t^{t \wedge \phi_{ij}} \left(p_{kl} \lambda_c + q_{kl} \lambda_k + \lambda_{kl} \right) ds} \right) \right] = E_0 \left(1_{\{\phi_{ij} \leq \phi_{kl} \}} e^{-\alpha(ij,kl)(t \wedge \phi_{ij}) - \left(p_{kl} \lambda_c + q_{kl} \lambda_k + \lambda_{kl} \right)(t \wedge \phi_{kl} - t \wedge \phi_{ij})} \right)
$$

$$
= \int_t^t \int_t^{s_2} \delta_{ij} \delta_{kl} e^{-\left(\alpha(ij,kl)+\delta_{ij}\right)(t \wedge \phi_{ij})+\left(p_{kl} \lambda_c + q_{kl} \lambda_k + \lambda_{kl} \right)s_1 + \left(\delta_{kl}\right)+\left(p_{kl} \lambda_c + q_{kl} \lambda_k + \lambda_{kl} \right)s_2} ds_1 ds_2 + \int_t^t \int_t^{s_2} \delta_{ij} \delta_{kl} e^{-\left(\alpha(ij,kl)+\delta_{ij}\right)(t \wedge \phi_{ij})+\left(p_{kl} \lambda_c + q_{kl} \lambda_k + \lambda_{kl} \right)s_1 + \left(\delta_{kl}\right)+\left(p_{kl} \lambda_c + q_{kl} \lambda_k + \lambda_{kl} \right)s_2} ds_1 ds_2 + \int_t^t \int_t^{s_2} \delta_{ij} \delta_{kl} e^{-\left(\alpha(ij,kl)+\delta_{ij}\right)(t \wedge \phi_{ij})+\left(p_{kl} \lambda_c + q_{kl} \lambda_k + \lambda_{kl} \right)s_1 + \left(\delta_{kl}\right)+\left(p_{kl} \lambda_c + q_{kl} \lambda_k + \lambda_{kl} \right)s_2} ds_1 ds_2
$$

$$
= \frac{\delta_{ij} \delta_{kl}}{(\alpha(ij,kl) + \delta_{ij} + \delta_{kl})(p_{kl} \lambda_c + q_{kl} \lambda_k + \lambda_{kl} + \delta_{kl})}
$$

$$
+ \frac{\delta_{ij} \left(\alpha(ij,kl)+\delta_{ij}\right)}{\left(\alpha(ij,kl)+\delta_{ij}-p_{kl} \lambda_c - q_{kl} \lambda_k - \lambda_{kl}\right)\left(p_{kl} \lambda_c + q_{kl} \lambda_k + \lambda_{kl} + \delta_{kl}\right)} e^{-\left(p_{kl} \lambda_c + q_{kl} \lambda_k + \lambda_{kl} + \delta_{kl}\right)\left(t \wedge \phi_{ij}\right)}
$$

$$
+ \frac{\delta_{ij} \left(\alpha(ij,kl)+\delta_{ij}\right)}{\left(\delta_{ij}\right)\left(\alpha(ij,kl)+\delta_{ij}+\delta_{kl}\right)} e^{-\left(\alpha(ij,kl)+\delta_{ij}+\delta_{kl}\right)\left(t \wedge \phi_{ij}\right)}
$$

26
By a similar argument, we have

\[
E_0 \left[1_{\{\phi_{ij} > \phi_{kl}\}} \left(e^{-\int_0^{t \wedge \phi_{kl}} \alpha(ij, kl) ds - \int_{t \wedge \phi_{kl}}^{t \wedge \phi_{ij}} (p_{ij} \lambda_c + q_{ij} \lambda_i + \lambda_{ij}) ds} \right) \right]
\]

\[
= \delta_{ij} \delta_{kl} \frac{\alpha(ij, kl) + \delta_{ij} + \delta_{kl}}{\delta_{kl}(p_{ij} \lambda_c + q_{ij} \lambda_i + \lambda_{ij})} e^{-\int_0^{t \wedge \phi_{kl}} \alpha(ij, kl) ds - \int_{t \wedge \phi_{kl}}^{t \wedge \phi_{ij}} (p_{ij} \lambda_c + q_{ij} \lambda_i + \lambda_{ij}) ds} e^{-(p_{ij} \lambda_c + q_{ij} \lambda_i + \lambda_{ij}) t}
\]

Similarly, we can compute \(E_0 \left[1_{\{\tau_{ij}^* \leq t \wedge \phi_{ij}\}} 1_{\{\tau_{kl}^* \leq t \wedge \phi_{kl}\}} \right] \) by noting that the only term will be affected by moving from \(\tau_{ij} \) and \(\tau_{kl} \) to \(\tau_{ij}^* \) and \(\tau_{kl}^* \) is \(\alpha(ij, kl) \). We can simply replace it with \(\alpha^*(ij, kl) \). Note that the default correlation only requires the terms that have been derived.
Table 1

The maximum likelihood estimation results for the Duffie, *et al* (2007) model (DSW) and the hierarchical intensity model (HIM). DSW is implemented with an exponential form of the intensity function (DSW-exp), i.e., according to the original DSW, and a logarithmic form (DSW-log). HIM is implemented with a logarithm form of the intensity function. Two different measures of average distance-to-default are reported. The sample covers the period of January 1991 to December 2009, and consists of 14,870 firms with 1,388,616 firm-month observations. There are 3,006 financial firms with 280,283 firm-month observations. The total number of defaults/bankruptcies is 1,021.

<table>
<thead>
<tr>
<th></th>
<th>DSW-exp</th>
<th>DSW-log</th>
<th>HIM-log</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Shock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intensity Function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>81.7901** (35.0781)</td>
<td>59.6406*** (21.8245)</td>
<td></td>
</tr>
<tr>
<td>AIG Dummy</td>
<td>-13.3849 (9.0434)</td>
<td>-23.1230** (10.2035)</td>
<td></td>
</tr>
<tr>
<td>Average DTD</td>
<td>-18.5976** (8.3147)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financial</td>
<td></td>
<td></td>
<td>-8.9590*** (3.4408)</td>
</tr>
<tr>
<td>p Function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>-7.5639*** (0.1602)</td>
<td>-7.5564*** (0.1551)</td>
<td></td>
</tr>
<tr>
<td>DTD</td>
<td>-0.5436*** (0.0438)</td>
<td>-0.5498*** (0.0436)</td>
<td></td>
</tr>
<tr>
<td>Firm-specific</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock Function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>-5.0337*** (0.0848)</td>
<td>-4.7045*** (0.0689)</td>
<td>-6.8891*** (0.2442)</td>
</tr>
<tr>
<td>AIG Dummy</td>
<td>-0.4071*** (0.1186)</td>
<td>-0.6696*** (0.1225)</td>
<td>-0.3523*** (0.1491)</td>
</tr>
<tr>
<td>Trailing 1-Year</td>
<td>0.3776** (0.1908)</td>
<td>0.2375 (0.1976)</td>
<td>0.9450*** (0.2633)</td>
</tr>
<tr>
<td>SP500 Return</td>
<td>(0.1908)</td>
<td>(0.1976)</td>
<td>(0.2633)</td>
</tr>
<tr>
<td>3-Month Treasury Rate</td>
<td>-0.0903*** (0.0184)</td>
<td>-0.1050*** (0.0141)</td>
<td>-0.1065*** (0.0245)</td>
</tr>
<tr>
<td>DTD</td>
<td>-0.8467*** (0.0237)</td>
<td>-0.9571*** (0.0278)</td>
<td>-1.0446*** (0.0481)</td>
</tr>
<tr>
<td>Trailing 1-Year</td>
<td>-3.3549*** (0.0822)</td>
<td>-3.0226*** (0.0848)</td>
<td>-5.6615*** (0.2829)</td>
</tr>
<tr>
<td>Return</td>
<td>(0.0822)</td>
<td>(0.0848)</td>
<td>(0.2829)</td>
</tr>
<tr>
<td>Log-likelihood</td>
<td>-5878.7</td>
<td>-5887.4</td>
<td>-5744.5</td>
</tr>
</tbody>
</table>

Note: * denotes significance at 10%, ** denotes significance at 5%, and *** denotes significance at 1%.
Figure 1
The time series plot for the observed number of default over the sample period (January 1991 to December 2009).
Figure 2
The observed default frequency over the entire sample period (January 1991 to December 2009) is used to check the predicted frequencies based on the Duffie, et al (2007) model (Firm specific) and the hierarchical intensity model implemented with the common and firm-specific shocks. “Firm Specific” is DSW-log in Table 1, and “Common + Firm specific” is HIM-log using the average distance-to-default for financial firms.
Figure 3a
The graph corresponds to the bottom third of the sample after dividing the whole sample (January 1991 to December 2009) into three groups using the average distance-to-default for the financial firms. This is used to check the predicted frequencies based on the Duffie, et al (2007) model (Firm specific) and the hierarchical intensity model implemented with the common and firm-specific shocks. “Firm Specific” is DSW-log in Table 1, and “Common + Firm specific” is HIM-log using the average distance-to-default for financial firms.
Figure 3b
The graph corresponds to the top third of the sample after dividing the whole sample (January 1991 to December 2009) into three groups using the average distance-to-default for the financial firms. This is used to check the predicted frequencies based on the Duffie, *et al* (2007) model (Firm specific) and the hierarchical intensity model implemented with the common and firm-specific shocks. “Firm Specific” is DSW-log in Table 1, and “Common + Firm specific” is HIM-log using the average distance-to-default for financial firms.
Figure 4
The cumulative accuracy profiles (power curves) depict the accuracy of default predictions based solely on rank orders. The entire sample period (January 1991 to December 2009) is used. The two plots correspond to the Duffie, et al (2007) model and the hierarchical intensity model implemented with the common and firm-specific shocks. “Firm Specific” is DSW-log in Table 1, and “Common + Firm specific” is HIM-log using the average distance-to-default for financial firms.
Figure 5
The Kullback-Leibler (KL) distance and the average distance-to-default for the financial firms are plotted over the sample period (January 1991 to December 2009). The KL distance is between the predicted frequency distributions based on two models: the Duffie, et al (2007) model (DSW-log in Table 1) and the hierarchical intensity model implemented with the common and firm-specific shocks (HIM-log in Table 1 using the average distance-to-default for financial firms). The KL distance is computed using the hierarchical intensity model as the base distribution.